氧化石墨(烯)材料的制備、吸附性能及機理研究
本文選題:氧化石墨(烯) + 氧化程度。 參考:《西南科技大學(xué)》2017年碩士論文
【摘要】:石墨碳原子層之間相互平行疊置且以短程范德華力相聯(lián)系,其間形成相對疏松的層間域,結(jié)構(gòu)層上的π鍵具有金屬鍵的性質(zhì)。因此具有良好的可插層,可氧化及剝分性。然而石墨氧化的難易程度、反應(yīng)速率、反應(yīng)條件及化學(xué)試劑的選擇直接或間接的影響氧化石墨(GO)產(chǎn)物結(jié)構(gòu)中官能團的類型和含量,進而影響結(jié)構(gòu)和陽離子交換性能?煽刂苽涮囟ü倌軋F類型的GO,既可直接作為優(yōu)良的吸附材料,而且能為基于GO功能化材料在吸附領(lǐng)域的應(yīng)用提供更佳的前軀體。本論文采用濃H_2SO_4和KMnO_4為反應(yīng)體系的Hummers法可控制備不同氧化程度的GO,研究了GO制備過程中的階段性特征;采用甲醛縮合法對不同氧化程度GO的陽離子交換容量(CEC)進行測定,并對GO的干、濕狀態(tài)及陽離子交換過程產(chǎn)物對比研究,查明陽離子交換機制及交換過程對GO結(jié)構(gòu)的影響;在GO制備、結(jié)構(gòu)和理化性質(zhì)(CEC性能)研究基礎(chǔ)上,進一步研究剝離后的GO即單層氧化石墨烯(GOs)對亞甲基藍(MB)的吸附性能及機理。研究表明氧化劑(KMnO_4)足量時,反應(yīng)時間和溫度對產(chǎn)物結(jié)構(gòu)特征有顯著影響?煽刂苽涞牡蜏(0~4°C)反應(yīng)時間為180 min,中溫(37°C)反應(yīng)時間為120 min,以及在原始氧化石墨(PGO)中因加水而引起的升溫溫度控制在65~75°C最佳,改變KMnO_4劑量時,石墨(002)面網(wǎng)的最大底面間距隨KMnO_4劑量發(fā)生規(guī)律性變化;可控制備獲得低氧化程度的GO結(jié)構(gòu)層上碳羥基(C-OH)相對含量較高,高氧化程度時環(huán)氧基(C-O-C)和羰基(C=O)含量較高;通過高倍光學(xué)顯微鏡對石墨的氧化過程在線分析發(fā)現(xiàn)KMnO_4是石墨發(fā)生氧化插層的充分條件,而濃H_2SO_4與石墨不發(fā)生插層反應(yīng),氧化過程由邊緣或缺陷處率先發(fā)生,并逐漸向面內(nèi)延伸。不同氧化程度的GO官能團類型和含量上都表現(xiàn)出較大的差異,采用甲醛縮合法測定CEC結(jié)果表明并非隨著氧化程度的增加CEC一直增大,而是與結(jié)構(gòu)中含氧基團C-OH和-COOH含量(即可解離出H+的量)相關(guān),可控氧化過程使GO-4樣品的CEC達到最大值541.81 mmol?(100g)-1,繼續(xù)增大氧化程度,反而使CEC減小;水介質(zhì)中GO層間域內(nèi)的H+與其它陽離子可發(fā)生交換,并在層間域內(nèi)形成水化陽離子層,陽離子交換過程可逆;[NH4(H_2O)6]+和[Ca(H_2O)6]2+以水合陽離子形式在層間域內(nèi)與GO結(jié)構(gòu)層上的C-O-以氫鍵結(jié)合,陽離子交換前后GO結(jié)構(gòu)及官能團未發(fā)生明顯變化。GO結(jié)構(gòu)層上的負電性及開放的層間域環(huán)境使其CEC值為蒙脫石的5~6倍,剝離后的GO(GOs-n)吸附亞甲基藍(MB)的最大飽和吸附量依次為728.44、965.63和807.29 mg·g-1,吸附過程符合準二級動力學(xué)模型,吸附量與GOs結(jié)構(gòu)中C-OH和-COOH含量成正相關(guān);GOs結(jié)構(gòu)上去質(zhì)子化的C-O-和-COO-為主要活性位點與MB+發(fā)生化學(xué)控速的單分子層吸附;在氧化程度低時,GOs結(jié)構(gòu)中C-OH和-COOH官能團之間以離子交換吸附為主導(dǎo)取代H;氧化程度高時,GOs結(jié)構(gòu)中的C-O-C和C=O含量增加與MB以氫鍵吸附作用增強,對吸附量的影響凸顯。
[Abstract]:The graphite carbon layers are parallel to each other and connected by short range van der Waals force, forming a relatively loose interlaminar domain. The 蟺 bonds on the structural layers have the properties of metal bonds. Therefore, it has good intercalation, oxidation and stripping properties. However, the degree of ease of graphite oxidation, reaction rate, reaction conditions and the selection of chemical reagents directly or indirectly affect the type and content of functional groups in the structure of graphite oxide (GOO) products, thus affecting the structure and cation exchange properties. The controllable preparation of specific functional group type goo can be used as an excellent adsorption material directly, and it can provide a better precursor for the application of go functionalized materials in adsorption field. In this paper, the phase characteristics of go preparation process were studied by using Hummers method with concentrated H_2SO_4 and KMnO_4 as reaction system, and the cation exchange capacity of go with different degree of oxidation was determined by formaldehyde condensation method. The dry, wet and cation exchange products of go were compared, and the effects of cation exchange mechanism and exchange process on go structure were investigated, and the preparation, structure and physical and chemical properties of go were studied. The adsorption properties and mechanism of GOs3 on MBM were studied. The results show that the reaction time and temperature have a significant effect on the structure of the product when the quantity of oxidizer KMnO4 is sufficient. The reaction time of controlled preparation is 180 min at low temperature (4 擄C) and 120 min at moderate temperature (37 擄C). The optimum temperature of water added in the raw graphite oxide is 6575 擄C, when the dosage of KMnO_4 is changed, The maximum bottom surface spacing of the graphite mesh varies regularly with the dose of KMnO_4, and the content of C-OH) on the go structure layer with low oxidation degree is relatively high, and the content of C-O-C) and carbonyl cationic acid on the go structure layer with high oxidation degree is higher. The on-line analysis of the oxidation process of graphite by high power optical microscope shows that KMnO_4 is the sufficient condition for the oxidation intercalation of graphite, while the strong H_2SO_4 does not intercalate with graphite, and the oxidation process occurs first from the edge or defect. And gradually extended into the plane. The types and contents of go functional groups with different degree of oxidation showed great differences. The results of CEC determination by formaldehyde condensation showed that CEC did not increase with the increase of oxidation degree. It is related to the content of oxygen group C-OH and -COOH in the structure (the amount of H can be dissociated). The controlled oxidation process can make the CEC of GO-4 sample reach the maximum value of 541.81 mmol / L ~ (100) g / m ~ (-1), and increase the degree of oxidation and decrease the content of CEC. In water medium, H in go interlayer can be exchanged with other cations, and a hydrated cationic layer is formed in the interlayer domain, and the cation exchange process is reversible. [NH4(H_2O)6] and [Ca(H_2O)6] 2 bond with C-O- on go structure layer in the form of hydrated cations in the interlayer domain. There was no obvious change in go structure and functional group before and after cation exchange. The negative electrical properties of go structure layer and the open interlayer environment made the CEC value of go layer 5 times than that of montmorillonite. The maximum saturated adsorption capacity was 728.44965.63 and 807.29 mg g ~ (-1), respectively. The adsorption process was in accordance with the quasi-second-order kinetic model. The adsorption capacity was positively correlated with the content of C-OH and -COOH in the GOs structure. The deprotonated C-O- and -COO- on the GOs structure were the main active sites for monolayer adsorption of MB at chemically controlled rate. When the oxidation degree is low, the adsorption of C-OH and -COOH in GOs structure is dominated by ion exchange adsorption, and the increase of C-O-C and Con O content in GOs structure with high degree of oxidation increases with the hydrogen bond adsorption of MB, and the effect on adsorption capacity is obvious.
【學(xué)位授予單位】:西南科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O613.71
【相似文獻】
相關(guān)期刊論文 前10條
1 韓志東,王建祺;氧化石墨的制備及其有機化處理[J];無機化學(xué)學(xué)報;2003年05期
2 Alison Russell;蔣學(xué)坤;;世界石墨生產(chǎn)和供應(yīng)現(xiàn)狀及發(fā)展趨勢(續(xù))[J];礦產(chǎn)保護與利用;1989年04期
3 稻垣道夫;來曉育;;石墨類導(dǎo)電材料[J];橡膠參考資料;1989年04期
4 周強;曹乃珍;劉英杰;溫詩鑄;;膨化石墨吸附特性的研究及利用[J];新型碳材料;1996年01期
5 邊光明;李雪芹;;影響石墨結(jié)合力的原因分析[J];內(nèi)燃機與配件;2014年01期
6 蘇育志,劉成波,張瑞芬,褶艷芬;氧化石墨的合成及其結(jié)構(gòu)研究[J];廣州師院學(xué)報(自然科學(xué)版);2000年03期
7 陳軍剛;彭同江;孫紅娟;劉波;趙二正;;還原溫度對氧化石墨官能團、結(jié)構(gòu)及濕敏性能的影響[J];無機化學(xué)學(xué)報;2014年04期
8 Karl F.W.Etzel;方群英;;碳與石墨:一種可滿足最高標準的、連接金屬和陶瓷的材料[J];國外非金屬礦;1989年03期
9 邱海鵬,郭全貴,翟更太,宋永忠,劉朗;粘結(jié)劑對石墨材料的物理性能及微觀結(jié)構(gòu)影響的研究[J];宇航材料工藝;2001年06期
10 宋國武;石墨嵌入復(fù)合物的制備及其應(yīng)用[J];江西化工;2002年04期
相關(guān)會議論文 前10條
1 鄭轍;田連弟;;煤基石墨的高分辨電子顯微象的研究[A];第六次全國電子顯微學(xué)會議論文摘要集[C];1990年
2 康飛宇;白東軍;;碳化硅分解石墨的結(jié)構(gòu)與形態(tài)[A];中國科學(xué)技術(shù)協(xié)會首屆青年學(xué)術(shù)年會論文集(工科分冊·上冊)[C];1992年
3 陳卓;;基于磁性石墨納米晶的生物檢測應(yīng)用[A];第七屆全國儀器分析及樣品預(yù)處理學(xué)術(shù)研討會論文集[C];2013年
4 顧則鳴;;利用分子軌道理論研究石墨的潤滑機理[A];摩擦學(xué)第三屆全國學(xué)術(shù)交流會論文集潤滑材料部分[C];1982年
5 邱海鵬;劉朗;韓立軍;丁海英;;單組元鈦摻雜石墨的導(dǎo)電性能及微觀結(jié)構(gòu)的研究[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集Ⅲ[C];2004年
6 傅玲;鄒艷紅;劉洪波;何月德;;氧化石墨及其聚合物納米復(fù)合材料的研究現(xiàn)狀[A];第19屆炭—石墨材料學(xué)術(shù)會論文集[C];2004年
7 姚延立;王曉敏;郭巧梅;杜文;許并社;;石墨微球的制備及化學(xué)修飾[A];第六屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(10)[C];2007年
8 ,
本文編號:1923934
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1923934.html