基于ASPN的不銹鋼表面復(fù)合共滲層組織結(jié)構(gòu)和性能研究
本文選題:316不銹鋼 + 活性屏離子氮化 ; 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:316不銹鋼具有價格低廉、優(yōu)異的耐蝕性、力學(xué)性能良好及良好的生物相容性等優(yōu)點,作為生物醫(yī)用植入材料,在牙齒矯正、整形外科、血管支架等方面得到了廣泛的應(yīng)用。然而,由于其硬度低、易黏著、耐磨性能差,且基本不具有抗菌性能,限制了316不銹鋼在醫(yī)療和食品加工行業(yè)的應(yīng)用。因此,在保持不銹鋼良好的耐蝕性同時提高不銹鋼的硬度、耐磨性并賦予不銹鋼良好抗菌性能亟需解決的問題。本文采用基于活性屏離子滲氮技術(shù)(ASPN)的等離子處理技術(shù),即用純銀或銅板作為不銹鋼活性屏的頂蓋,在不銹鋼表面制備了Ag-N和Cu-N復(fù)合共滲層,分別對Ag-N和Cu-N兩種共滲層處理后試樣的組織結(jié)構(gòu)、硬度、耐腐蝕性能、摩擦磨損性能及抗菌性能進(jìn)行了研究。主要研究結(jié)果如下:(1)采用改進(jìn)的ASPN技術(shù)在316奧氏體不銹鋼表面制備均勻且致密的由Ag或Cu摻雜S相納米結(jié)構(gòu)沉積層和S相擴(kuò)散層組成的Ag-N或CuN復(fù)合共滲層。Ag-N共滲層的膜層總厚度約為12.0μm,其中沉積層的厚度為0.6μm。Cu-N復(fù)合共滲層膜層總厚度為12.0μm,沉積層的厚度達(dá)到為2.0μm。(2)經(jīng)過氮化后的Ag-N和Cu-N復(fù)合共滲層試樣,其表面硬度較不銹鋼基體均顯著提高。其中試樣Ag-N和Cu-N共滲層表面硬度分別可提高至1259 HV0.05和1300 HV0.05,為不銹鋼基材硬度的3-4倍。(3)在干摩擦條件下,Ag-N和Cu-N共滲層及不銹鋼基材的磨損機(jī)制均為粘著磨損和磨粒磨損。在人工模擬體液中Ag-N和Cu-N共滲層及不銹鋼基材的磨損機(jī)制均為粘著磨損、磨粒磨損和腐蝕磨損。通過對比發(fā)現(xiàn)Ag-N和Cu-N共滲處理可有效提高不銹鋼基材的抗粘著磨損能力。(4)Ag-N復(fù)合共滲層對金黃色葡萄球菌的抗菌率均達(dá)到100%,經(jīng)Cu-N共滲處理后的試樣S1和S2的抗菌性可達(dá)98.5%和99.8%。通過對比發(fā)現(xiàn)Ag-N和Cu-N共滲均使得不銹鋼表現(xiàn)出良好的抗菌性能。
[Abstract]:316 stainless steel has the advantages of low cost, excellent corrosion resistance, good mechanical properties and good biocompatibility. As a biomedical implant material, 316 stainless steel has been widely used in orthodontics, plastic surgery, vascular stent and so on. However, the application of 316 stainless steel in medical and food processing industries is limited because of its low hardness, easy adhesion, poor wear resistance and little antibacterial property. Therefore, it is urgent to solve the problem of keeping good corrosion resistance of stainless steel and improving hardness and wear resistance of stainless steel and endowing good antibacterial property of stainless steel. In this paper, the plasma treatment technology based on active screen ion nitriding technology is used, that is, pure silver or copper plate is used as the top cover of stainless steel active screen, and the Ag-N and Cu-N composite co-infiltration layer is prepared on the surface of stainless steel. The microstructure, hardness, corrosion resistance, friction and wear properties and antibacterial properties of the samples treated with Ag-N and Cu-N were studied. The main results are as follows: (1) the surface of 316 austenitic stainless steel was prepared by modified ASPN technique. Homogeneous and dense Ag-N or CuN composite co-infiltrating layer composed of Ag or Cu doped S phase nanostructure and S phase diffusion layer was prepared on the surface of 316 austenitic stainless steel. The total thickness of the coating is about 12.0 渭 m, in which the total thickness of the deposit layer is 0.6 渭 m.Cu-N, the total thickness of the deposit layer is 12.0 渭 m, and the thickness of the deposit layer is 2.0 渭 m 路m ~ (-2). The surface hardness is significantly higher than that of stainless steel matrix. The surface hardness of the Ag-N and Cu-N co-infiltrating layer can be increased to 1259 HV0.05 and 1300 HV0.05 respectively, which is 3-4 times of the stainless steel substrate hardness.) under dry friction condition, the wear mechanism of the Ag-N and Cu-N co-infiltrating layers and the stainless steel substrates are both adhesive wear and abrasive wear. In artificial simulated body fluid, the wear mechanisms of Ag-N and Cu-N co-permeation layer and stainless steel substrate are adhesive wear, abrasive wear and corrosion wear. It was found that Ag-N and Cu-N co-permeation treatment could effectively improve the adhesive wear resistance of stainless steel substrate. The antibacterial rate of Ag-N composite layer against Staphylococcus aureus was 100. The antibacterial properties of S _ 1 and S _ 2 treated by Cu-N were 98.5% and 99.8% respectively. It was found that both Ag-N and Cu-N co-infiltration made stainless steel exhibit good antibacterial properties.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG174.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于仁浩;劉峰;;石油化工裝置中奧氏體不銹鋼性能研究與探索[J];當(dāng)代化工;2016年10期
2 馬濤;李運剛;;抗菌不銹鋼的發(fā)展研究現(xiàn)狀及展望[J];材料導(dǎo)報;2015年13期
3 Xin Li;Jun Shu;Liqing Chen;Hongyun Bi;;Effect of Cerium on High-Temperature Oxidation Resistance of 00Cr17NbTi Ferritic Stainless Steel[J];Acta Metallurgica Sinica(English Letters);2014年03期
4 吳恒;侯曉薇;李超;張波;;316L不銹鋼在淡化海水中的耐腐蝕性能研究[J];裝備環(huán)境工程;2013年06期
5 王琦;盧軍;楊威;王靜;;奧氏體不銹鋼低溫離子滲氮工藝研究[J];熱處理;2013年05期
6 郭為民;張慧霞;侯建;程文華;鄭家青;;鈍化金屬深海環(huán)境電偶腐蝕性能研究[J];裝備環(huán)境工程;2012年06期
7 ;Surface analysis and electrochemical behaviour of the self-assembled polydopamine/dodecanethiol complex films in protecting 304 stainless steel[J];Science China(Technological Sciences);2012年06期
8 倪紅衛(wèi);詹瑋婷;陳榮生;;Ag/Cu共滲不銹鋼表面的微觀結(jié)構(gòu)及抗菌性能研究[J];材料導(dǎo)報;2011年08期
9 馬勝歌;郭元元;周yN;張以忱;;304不銹鋼低溫離子滲氮和氮碳共滲工藝[J];金屬熱處理;2011年04期
10 陳禮斌;高永春;;不銹鋼技術(shù)及其發(fā)展[J];河北冶金;2011年03期
相關(guān)碩士學(xué)位論文 前1條
1 劉偉燕;316L不銹鋼表面等離子鈦合金化及相關(guān)性能研究[D];太原理工大學(xué);2010年
,本文編號:1878748
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1878748.html