碲化鉍基熱電薄膜制備與性能分析及其器件設(shè)計(jì)
本文選題:磁控濺射 + Bi/Te多層薄膜 ; 參考:《天津工業(yè)大學(xué)》2017年碩士論文
【摘要】:早在1823年熱電效應(yīng)就被人們所發(fā)現(xiàn),該效應(yīng)是熱能和電能之間的相互轉(zhuǎn)換,其產(chǎn)生的原因是熱電材料所具有的獨(dú)特屬性所致。隨著社會(huì)發(fā)展,人們對(duì)環(huán)境友好、能源利用率高的制冷設(shè)備的需求更加迫切,因此具有無(wú)污染、體積小的基于熱電材料微加工制成的高效制冷器受到了人們的關(guān)注。相對(duì)于其它熱電材料,碲化鉍(Bi2Te3)具有較高的熱電轉(zhuǎn)換效率,并且隨著納米技術(shù)及納米材料的長(zhǎng)足發(fā)展,人們發(fā)現(xiàn)薄膜形式的二維熱電材料相對(duì)于塊體材料有著更高的熱電優(yōu)值,二維材料可增加熱聲子的散射,從而降低熱導(dǎo)率,提高Seebeck系數(shù)。因此,本文通過(guò)設(shè)計(jì)Bi/Te基多層薄膜輔以快速退火(RTP)來(lái)對(duì)Bi/Te基二維熱電材料的性能進(jìn)行研究。為了提高Bi/Te基熱電薄膜的熱電優(yōu)值,本文首先從熱電優(yōu)值(ZT)的物理方程出發(fā),通過(guò)調(diào)節(jié)工藝參數(shù)來(lái)控制熱電薄膜的微結(jié)構(gòu),進(jìn)而在微結(jié)構(gòu)調(diào)整上實(shí)現(xiàn)熱導(dǎo)率λ減小的同時(shí),使功率因數(shù)P(PF=S2σ,用于表征Seebeck系數(shù)和電導(dǎo)率的綜合效果)增加。其工藝上的實(shí)施方法是在微結(jié)構(gòu)中通過(guò)磁控濺射的方式在基片上交替生長(zhǎng)單質(zhì)Bi和單質(zhì)Te,輔以RTP快速退火來(lái)使Bi和Te發(fā)生反應(yīng)生成Bi2Te3化合物,并通過(guò)退火來(lái)減小Bi2Te3中的缺陷從而提高Seebeck系數(shù)。在反應(yīng)生成Bi2Te3材料的同時(shí),Bi和Te單質(zhì)層中間會(huì)形成晶界,從而提高了聲子散射,降低了熱導(dǎo)率λ。其次,為了進(jìn)一步提升熱電材料的熱電優(yōu)值和降低薄膜的缺陷,對(duì)多層二維結(jié)構(gòu)薄膜的樣品材料進(jìn)行快速退火處理,在熱處理的過(guò)程中,發(fā)現(xiàn)隨著退火時(shí)間的延長(zhǎng),薄膜的熱電參數(shù)均出現(xiàn)了明顯的振蕩現(xiàn)象,這些振蕩現(xiàn)象使得在退火的某些時(shí)刻其Seebeck系數(shù)和功率因數(shù)遠(yuǎn)遠(yuǎn)高于塊體材料。并且發(fā)現(xiàn)退火溫度越高,各個(gè)熱電參數(shù)(包括Seebeck系數(shù),載流子濃度,電導(dǎo)率,功率因數(shù),遷移率等)的振幅也隨之升高。經(jīng)研究發(fā)現(xiàn)該現(xiàn)象為二維薄膜材料所特有的量子尺寸效應(yīng),通過(guò)量子尺寸效應(yīng)理論,來(lái)控制快速退火的溫度(室溫~400℃)和退火時(shí)間(0 min~26 min),并對(duì)各個(gè)熱電參數(shù)的振蕩關(guān)系進(jìn)一步研究,發(fā)現(xiàn)載流子濃度與Seebeck系數(shù)成反比關(guān)系,載流子濃度與電導(dǎo)率成正比關(guān)系。并且在該實(shí)驗(yàn)中獲得的Seebeck系最大可達(dá)到190.41 μV·K-1,功率因數(shù)達(dá)到30.96 μW·K-2·m-1,這些參數(shù)都遠(yuǎn)高于塊體材料,可制備性能更加優(yōu)良的熱電器件。最后為了確定退火后生成物對(duì)熱電材料性能的影響,對(duì)不同溫度退火下的樣品進(jìn)行XRD元素測(cè)量,分析退火后的元素產(chǎn)物構(gòu)成及形成原因。最終,為了將研究中所獲得的優(yōu)良特性材料制作成熱電器件。本文使用ANSYS Mechanical APDL 17.0軟件進(jìn)行熱電器件的結(jié)構(gòu)建模,并設(shè)計(jì)成橫向和縱向結(jié)構(gòu),然后分析兩種結(jié)構(gòu)的優(yōu)劣。隨后將實(shí)驗(yàn)中所得到的最優(yōu)熱電參數(shù)導(dǎo)入到最優(yōu)的結(jié)構(gòu)模型當(dāng)中,分別改變通過(guò)熱電偶的電流,以及改變熱電偶的尺寸參數(shù)來(lái)找出器件中熱電轉(zhuǎn)換效率最優(yōu)的參數(shù)設(shè)置,并且研究了通過(guò)熱電偶的電流,以及器件高度與熱電轉(zhuǎn)換效率之間的關(guān)系。隨后,基于建模后的熱電器件尺寸模型,進(jìn)行了濕法刻蝕的制作工藝流程探索,分析了工藝流程中各個(gè)工藝步驟的注意事項(xiàng)并提出了改善方案。
[Abstract]:As early as 1823, the thermoelectric effect was discovered by people. This effect is the mutual conversion between thermal energy and electric energy. The cause is caused by the unique properties of thermoelectric materials. With the development of society, the demand for environment friendly and high energy utilization refrigeration equipment is more urgent, so it has no pollution and small volume based on heat. Compared with other thermoelectric materials, bismuth telluride (Bi2Te3) has a higher efficiency of thermoelectric conversion than other thermoelectric materials. With the rapid development of nanotechnology and nanomaterials, it is found that the two-dimensional thermoelectric material in the form of thin film has a higher thermoelectric value than the block material, two The material can increase the scattering of the heating phonon, thus reducing the thermal conductivity and increasing the Seebeck coefficient. Therefore, this paper studies the performance of the Bi/Te based two-dimensional thermoelectric materials by designing a Bi/Te based multilayer film with rapid annealing (RTP). In order to improve the thermoelectric properties of the Bi/Te based thermoelectric film, the physical equation of the thermoelectric value (ZT) is first obtained. The micro structure of the thermoelectric film is controlled by adjusting the technological parameters, and then the thermal conductivity is reduced by the microstructural adjustment, and the power factor P (PF=S2 Sigma is used to characterize the comprehensive effect of the Seebeck coefficient and the conductivity). The process of implementation is to alternate the substrate on the substrate by magnetron sputtering in the microstructures. The growth of the single substance Bi and the single substance Te, supplemented by RTP rapid annealing, reacts Bi and Te to produce Bi2Te3 compounds, and reduces the defects in Bi2Te3 by annealing to improve the Seebeck coefficient. The grain boundary will be formed in the middle of the Bi and Te monomer layers in the reaction generation of Bi2Te3 materials, thus raising the phonon scattering and reducing the thermal conductivity lambda. Secondly, for the sake of reducing the thermal conductivity lambda. To further enhance the thermoelectric value of the thermoelectric materials and reduce the defects of the film, the sample materials of the multilayer two-dimensional structure film are annealed quickly. In the process of heat treatment, it is found that the thermoelectric parameters of the thin film are obviously oscillating with the prolongation of the annealing time. These oscillations make them at some time in the annealing. The Seebeck coefficient and the power factor are much higher than the bulk material. It is found that the higher the annealing temperature, the amplitude of the thermoelectric parameters, including the Seebeck coefficient, the carrier concentration, the conductivity, the power factor, the mobility and so on, also increases. According to the theory, the temperature (room temperature to 400 C) and annealing time (0 min ~ 26 min) are controlled, and the oscillation relation of each thermoelectric parameter is further studied. It is found that the carrier concentration is inversely proportional to the Seebeck coefficient, and the carrier concentration is proportional to the conductivity. And the maximum of the Seebeck system in this experiment can reach 190.. 41 mu V. K-1, the power factor reaches 30.96 W. K-2. M-1. These parameters are far higher than the bulk material, and can prepare the thermoelectric devices with better performance. Finally, in order to determine the effect of the annealing generation on the properties of the thermoelectric materials, the samples were measured by XRD elements at different temperatures, and the composition and formation of the element products after annealing were analyzed. Finally, in order to make the excellent material obtained in the study into thermoelectric devices. This paper uses ANSYS Mechanical APDL 17 software to model the structure of the thermoelectric device, and designs the transverse and longitudinal structure, and then analyzes the advantages and disadvantages of the two structures. Then, the optimal thermoelectric parameters obtained in the experiment are introduced to the optimal junction. In the structure model, the optimal parameters of thermoelectric conversion efficiency are found by changing the current of the thermocouple and changing the size parameters of the thermocouple, and the relationship between the current through the thermocouple and the relationship between the height of the device and the efficiency of the thermoelectric conversion is studied. The technological process of wet etching was explored, and the matters needing attention in each process step were analyzed, and the improvement plan was put forward.
【學(xué)位授予單位】:天津工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.2;TB657
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李秦;檀柏梅;張建新;牛新環(huán);高寶紅;田會(huì)娟;;退火時(shí)間對(duì)Bi/Te多層薄膜結(jié)構(gòu)和熱電性能的影響[J];硅酸鹽學(xué)報(bào);2016年01期
2 陳林根;孟凡凱;戈延林;孫豐瑞;;半導(dǎo)體熱電裝置的熱力學(xué)研究進(jìn)展[J];機(jī)械工程學(xué)報(bào);2013年24期
3 何琳;王家林;;任意多連通截面扭轉(zhuǎn)應(yīng)力函數(shù)的溫度場(chǎng)比擬解法[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年05期
4 盧江雷;王廣龍;孫連峰;高鳳岐;余芳;王鋼;王紅培;;碳納米管薄膜熱電發(fā)電機(jī)設(shè)計(jì)及耦合分析[J];功能材料;2012年17期
5 潘?;阮萍;李福;王洪偉;;熱電制冷器制冷工作電流特性分析[J];紅外與激光工程;2011年06期
6 趙建云;朱冬生;周澤廣;王長(zhǎng)宏;陳宏;;溫差發(fā)電技術(shù)的研究進(jìn)展及現(xiàn)狀[J];電源技術(shù);2010年03期
7 王博;黃劍鋒;夏常奎;;電化學(xué)沉積法制備薄膜、涂層材料研究進(jìn)展[J];陶瓷;2010年01期
8 宋春燕;貴永亮;胡賓生;石焱;;金屬硅化物及其復(fù)合材料的研究進(jìn)展[J];材料導(dǎo)報(bào);2009年23期
9 劉軍;楊方燕;;電子產(chǎn)品溫度試驗(yàn)仿真技術(shù)探討[J];電子產(chǎn)品可靠性與環(huán)境試驗(yàn);2009年S1期
10 屠海令;王磊;杜軍;;半導(dǎo)體集成電路用金屬硅化物的制備與檢測(cè)評(píng)價(jià)[J];稀有金屬;2009年04期
,本文編號(hào):1868217
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1868217.html