天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 碩博論文 > 工程碩士論文 >

濃縮與壓濾過程藥劑協同控制系統(tǒng)研究與應用

發(fā)布時間:2018-04-15 09:14

  本文選題:煤泥水處理 + 藥劑優(yōu)化; 參考:《太原理工大學》2017年碩士論文


【摘要】:煤泥水處理作為選煤廠的一項重要工藝流程,直接關系到廠區(qū)的閉水循環(huán)指標,同時也對選煤廠整體效率與生產指標造成影響。濃縮與壓濾是煤泥水處理中的兩個關鍵環(huán)節(jié),其目的就是為了實現煤泥水中細微顆粒與清水的分離,回收煤泥,清水循環(huán)利用。絮凝劑與助濾劑的添加主要是為了改變煤泥水微粒的表面電性,加速煤泥微粒絮團的形成,加速沉淀,并提高脫水性能。本文針對成莊礦選煤廠原有絮凝劑與助濾劑藥劑添加裝置系統(tǒng)中添加量由人工設置或針對單個環(huán)節(jié)進行添加量控制的問題,沒有兼顧濃縮與壓濾兩個相關環(huán)節(jié)的協同作用,造成藥劑添加不合理,造成藥劑的浪費,為了解決上述問題,提出了針對濃縮與壓濾過程藥劑協同控制的研究。通過對原有絮凝劑與助濾劑藥劑添加裝置的分析,現具有完善的藥劑溶液制備裝置與自動添加裝置,藥劑添加量控制策略有待完善。系統(tǒng)利用原有的制備與添加裝置,藥劑添加量由協同系統(tǒng)求解所得。煤泥水處理過程作為一個典型的物化反應過程,在濃縮與壓濾過程中藥劑添加量主要影響變量為入料濃度、入料流量、底流濃度、溢流濃度、壓濾周期與煤泥餅水分,該過程具有強耦合、非線性、大滯后等特點,很難通過數學推導建立其模型,本文提出了通過BP神經網絡對藥劑添加量進行模型的建立,并通過APSO算法進行最優(yōu)量求解的策略。經過對BP神經網絡原理和推理算法的分析,基于煤泥水處理中變量影響關系,分別建立4×5×1結構的絮凝劑添加模型與3×5×1結構的助濾劑神經網絡模型,并利用現場50組數據對網絡訓練。依據要實現目標與現場工況建立藥劑添加優(yōu)化量最優(yōu)化模型,確定優(yōu)化約束條件,選定PSO算法對藥劑最優(yōu)化模型進行求解計算,并利用慣性權重值與粒子飛翔速度線性遞減的自適應策略對PSO算法進行改進。在Matlab平臺對APSO算法進行程序的設計與運行。為了實現算法對優(yōu)化量的在線求解計算,通過Simulink仿真平臺利用S函數調用APSO程序,并通過OPC技術實現與PLC控制器的聯合運行。本系統(tǒng)選用AB 1756-Control Logix PLC為協同控制器,研華科技ACP4000作為上位機,系統(tǒng)進行硬件結構的搭建,使用RSLogix5000進行控制器程序的編寫,選用Matlab/Simulink作為APSO算法在線計算平臺。為了實現數據的交互,使用MSG功能模塊與原系統(tǒng)控制器進行通訊,利用OPC接口技術實現控制器與Matlab、FT VIEW之間的數據通訊。系統(tǒng)通過現場傳感器采集工況數據,通過OPC技術反饋到Matlab的APSO算法相應變量中,由算法在線對該工況下最優(yōu)藥劑添加量求解計算,將優(yōu)化藥劑量經協同控制器返回給原藥劑添加系統(tǒng),之后原藥劑添加系統(tǒng)按優(yōu)化藥劑量執(zhí)行動作,達到在線協同優(yōu)化的目的。系統(tǒng)在成莊礦選煤廠運行穩(wěn)定可靠,且通過對系統(tǒng)運行前后三個月的數據分析,煤泥生產總量也略有提高,同時噸煤泥PAC藥耗由2.453Kg/T降低到2.341Kg/T,噸煤泥PAM藥耗由0.182Kg/T降低到0.172Kg/T。藥劑消耗的經濟指標,由4.119降低到3.914。說明本系統(tǒng)不僅保證了煤泥水處理系統(tǒng)生產速率,同時降低了藥劑的消耗,提高了藥劑間的協同作用與選煤廠經濟效益。
[Abstract]:Slime water treatment is an important process of coal preparation plant, is directly related to the closed water circulation index of the plant, but also the impact on the overall efficiency of coal preparation plant and production index. Concentration and filter press are two key links of slime water treatment, its purpose is to realize the separation of fine particles and water in coal slurry recycling water slime, recycling. Adding flocculant and filter aid is mainly to change the surface electric properties of coal slurry particles, the formation of slime particles, accelerate floc accelerated precipitation, and improve the dewatering performance. This paper focused on the effects of Chengzhuang Coal Preparation Plant original flocculant and filter aid agent adding device system by artificial set or for a single link to add volume control problems, did not take into account the synergistic effect of the two related aspects of concentration and filter press, by adding medicament is not reasonable, resulting in chemical waste, for To solve the above problems, put forward in the research process of the drug concentration and filter press cooperative control. Through the analysis of the original flocculant adding device and filter aid agent, reagent solution preparation device has perfect device and automatic adding reagent addition, control strategy needs to be improved. The system uses the original preparation and adding device the reagent addition by solving the cooperative system. The slime water treatment process as a typical chemical reaction process, adding amount of main influence variable feeding concentration in concentration and filtration process of traditional Chinese medicine agent, feeding rate, bottom flow concentration, overflow concentration, filtration cycle and slime cake moisture, the process with strong coupling. The characteristics of nonlinear, large delay, it is difficult to establish the model through mathematical derivation, this paper proposes to establish the BP neural network of the reagent addition model, and the optimal APSO algorithm The amount of solving strategy. Through the analysis of the BP neural network principle and inference algorithm, variable slime water treatment effect based on the established 4 * 5 * 1 flocculant structure filter aid addition neural network model with 3 x 5 x 1 structure, and using the data of the 50 groups on the basis of network training. To achieve the goal of establishing pharmacy and site conditions add optimization optimization model to determine the optimal conditions, selected PSO algorithm to solve this optimization model of agents, and the use of inertia weight value to improve the PSO algorithm and the particle velocity decreases linearly flying adaptive strategy. In the design and operation of the Matlab platform program of APSO algorithm. In order to on line optimization algorithm of computing quantity, by using the S function call APSO program Simulink simulation platform, and through the implementation of joint operation with the PLC controller of OPC technology. This system The AB 1756-Control Logix PLC for collaborative controller, Advantech ACP4000 as the host computer, the hardware structure of the system was set up, prepared using RSLogix5000 controller program, Matlab/Simulink is selected as the APSO algorithm of online computing platform. In order to realize data exchange, MSG module is used to communicate with the original system controller, controller and Matlab using OPC interface technology, data communication between FT VIEW. This system uses the sensor to collect performance data by OPC technology, feedback to the Matlab APSO algorithm the corresponding variables, by the method of online optimal agent under the condition, adding amount of calculation, the optimization dosage by synergetic controller is returned to the technical agent system, after the original agent according to the optimized dosage action, achieve online collaborative optimization. System in Chengzhuang coal mine coal preparation plant stable operation Reliable, and through the analysis of the data of three months before and after the operation system, the total coal production also increased slightly, while PAC tons of slime drug consumption decreased from 2.453Kg/T to 2.341Kg/T, the economic index decreased from 0.182Kg/T to 0.172Kg/T. pharmaceutical consumption consumption tons of slime PAM drugs, reduced from 4.119 to 3.914. that the system not only ensured the production rate coal slurry treatment, and reduce drug consumption, improve the pesticides and the synergy between coal preparation plant and economic benefits.

【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD94

【參考文獻】

相關期刊論文 前10條

1 Su Xin;Wu Yingya;Pei Huajian;Gao Jinsen;Lan Xingying;;Prediction of Coke Yield of FCC Unit Using Different Artificial Neural Network Models[J];China Petroleum Processing & Petrochemical Technology;2016年03期

2 李文劍;李曉波;呂春蕾;朱博;;OPC通訊在AB PLC上的應用[J];橡塑技術與裝備;2016年14期

3 郭年琴;喬保蒙;林通;;廂式壓濾機過濾過程數值模擬與仿真[J];金屬礦山;2016年05期

4 李春華;徐少雄;;基于PSO的RBF神經網絡的變頻調速系統(tǒng)的研究[J];工業(yè)儀表與自動化裝置;2015年03期

5 喬如林;陳蘭花;張慶芳;賈小寧;孔秀琴;;復合絮凝劑+PAC+PAM處理濃縮液的研究[J];化學與生物工程;2015年05期

6 霍軍周;王亞杰;歐陽湘宇;蔡寶;;基于BP神經網絡的TBM主軸承載荷譜預測[J];哈爾濱工程大學學報;2015年07期

7 張鴻波;蘇長虎;朱瑩瑩;王會平;胡炳雙;;化學助濾劑強化煤泥過濾脫水效果的試驗研究[J];選煤技術;2014年06期

8 敖永才;師奕兵;張偉;李焱駿;;自適應慣性權重的改進粒子群算法[J];電子科技大學學報;2014年06期

9 郝思齊;池慧;;三種常見現代優(yōu)化算法的比較[J];價值工程;2014年27期

10 蘭健;;洗水閉路循環(huán)之洗水平衡探討[J];科技風;2014年16期

相關博士學位論文 前1條

1 高貴軍;絮凝劑溶解液制備及自動添加機理研究[D];太原理工大學;2010年

相關碩士學位論文 前7條

1 白飛燕;煤泥壓濾過程藥劑自動添加系統(tǒng)的研究與應用[D];太原理工大學;2016年

2 郝源;基于人工神經網絡的建筑熱負荷預測及控制[D];大連海事大學;2015年

3 張文武;濕法冶金全流程動態(tài)模擬與預測控制[D];東北大學;2014年

4 柳曉明;基于自適應粒子群算法的城市給水管網優(yōu)化設計[D];重慶大學;2012年

5 王德才;膏體濃縮機主體結構的力學分析[D];太原科技大學;2011年

6 張瑾夏;濃縮池連續(xù)沉降過程數學模型及模擬[D];太原科技大學;2011年

7 劉蓉;自適應粒子群算法研究及其在多目標優(yōu)化中應用[D];華南理工大學;2011年

,

本文編號:1753470

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1753470.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶fae29***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com