環(huán)境友好型抗菌織物研制
本文選題:鎂基涂層織物 切入點:鎂基織物 出處:《大連海事大學(xué)》2017年碩士論文
【摘要】:抗菌織物通過制備抗菌纖維后織造成織物和織物抗菌后整理工藝兩種方式得到。前者相較于后者工藝流程復(fù)雜,對抗菌劑的物化性能要求較高,但前者獲得的織物抗菌劑用量少、抗菌效果好、耐洗性高。本文采用兩種方式得到抗菌織物:一是預(yù)先制備抗菌母粒,經(jīng)過熔融紡絲得到抗菌纖維,再將抗菌纖維紡織成抗菌織物;二是將織物經(jīng)涂層后得到抗菌織物。定性測試操作簡單,檢測快速,但不能準(zhǔn)確得出織物抗菌率。定量測試方法中應(yīng)用較為廣泛的有吸收法和振蕩法兩大類,得到的測試結(jié)果能夠客觀的評價織物抗菌性能。本文在AATCC-100法和振蕩法的基礎(chǔ)上,采用改良AATCC-100法和改良振蕩法檢測織物對大腸桿菌和金黃色葡萄球菌的抗菌性能,使測試方法更符合抗菌織物性質(zhì)。目前國內(nèi)外采用的織物抗菌劑主要分為無機(jī)抗菌劑、有機(jī)抗菌劑和天然抗菌劑。無機(jī)抗菌劑以其具備良好的耐熱性、持久性、連續(xù)性和安全性,被廣泛應(yīng)用到抗菌織物中。近年來,銀系抗菌劑、銅系抗菌劑、鋅系抗菌劑等涉及重金屬的使用,故采用環(huán)境友好型抗菌劑是趨勢所在。本文采用鎂基材料作為抗菌劑制備抗菌織物,符合環(huán)境友好型材料的發(fā)展趨勢,得到的織物為環(huán)境友好型抗菌織物?咕w維或織物在涉海人員健康保護(hù)、船舶污水處理和船舶廢氣處理等諸多方面均有廣泛應(yīng)用。實驗結(jié)果表明:(1)1250目、2500目和5000目的水鎂石原粉復(fù)配比例為1:1:2時,粉體致密,堆積密度大,制備的鎂基涂層織物表面光滑。(2)納米鎂基粉體和PET母粒復(fù)配比例為1:4時制備成鎂基母粒。(3)制備成納米鎂基粉體含量在1%~5%內(nèi)的鎂基織物。(4)鎂基涂層織物對大腸桿菌抗菌作用良好,抑菌率在90%以上,對金黃色葡萄球菌抗菌效果較差。(5)采用鎂基母粒制成的織物抗菌作用良好,納米鎂基粉體添加量5%的織物對大腸桿菌和金黃色葡萄球菌的抑菌率均達(dá)到90%以上。
[Abstract]:Antimicrobial fabrics were obtained by the preparation of antibacterial fibers and the antibacterial finishing process.Compared with the latter, the former process is complex and requires higher physical and chemical properties of antimicrobial agents, but the former has the advantages of small amount of fabric antimicrobial agents, good antibacterial effect and high washing resistance.In this paper, antimicrobial fabrics were obtained by two methods: first, the antibacterial masterbatch was prepared in advance, then the antibacterial fiber was obtained by melt spinning, and then the antibacterial fiber was woven into the antibacterial fabric; the second, the antibacterial fabric was obtained after the fabric was coated.The qualitative test is simple and rapid, but it can not get the antibacterial rate of fabric accurately.There are two kinds of quantitative testing methods: absorption method and oscillatory method. The results can objectively evaluate the antibacterial properties of fabrics.Based on the AATCC-100 method and the oscillatory method, the modified AATCC-100 method and the modified oscillatory method were used to detect the antibacterial properties of the fabric against Escherichia coli and Staphylococcus aureus.At present, fabric antimicrobial agents used at home and abroad are mainly divided into inorganic antimicrobial agents, organic antimicrobial agents and natural antimicrobial agents.Inorganic antimicrobial agents are widely used in antibacterial fabrics due to their good heat resistance, durability, continuity and safety.In recent years, the use of heavy metals is involved in the use of silver, copper and zinc series antimicrobials, so the use of environment-friendly antimicrobial agents is the trend.In this paper, magnesium base material was used as antimicrobial agent to prepare antibacterial fabric, which was in line with the development trend of environment-friendly material, and the obtained fabric was environment-friendly antibacterial fabric.Antibacterial fibers or fabrics are widely used in marine health protection, ship sewage treatment and ship waste gas treatment.The experimental results show that the powder is dense and the bulk density is high when the mixture ratio of 5000 object brucite and 1 250 mesh brucite raw powder is 1:1:2.The magnesia-based coated fabric containing 1% or 5% magnesium matrix powder has good antibacterial effect on Escherichia coli, when the surface of the coated fabric is smooth and the PET masterbatch is composed of nano-Mg-based powder and PET masterbatch at 1:4, and the magnesia-based masterbatch is prepared with the content of nano-Mg-based powder within 1%, and the content of Mg-base powder is less than 1%, and the magnesium-based coated fabric has good antibacterial effect on Escherichia coli.The bacteriostatic rate was more than 90%, and the antibacterial effect against Staphylococcus aureus was not good.The bacteriostasis rate of the fabric containing 5% nano-Mg-based powder against Escherichia coli and Staphylococcus aureus was more than 90%.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TS106
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 凌群民 ,張建國 ,徐繼寵;對抗菌織物的全面評價[J];中國纖檢;2003年01期
2 王裕中;俄羅斯生產(chǎn)的抗菌織物[J];上海紡織科技;1997年05期
3 蘇存讓;抗菌織物身價倍增[J];紡織器材;1999年01期
4 何秀玲,郭臘梅;抗菌織物的發(fā)展與應(yīng)用現(xiàn)狀[J];廣西紡織科技;2003年03期
5 鄭華英,王斌,孫敏,周璇,吳林,陳楠,夏江,朱焰,熊燕,江元山,龔潔,曾晶;抗菌織物檢驗方法的研究[J];中國衛(wèi)生檢驗雜志;2004年02期
6 何敏珠,閻均,龔羽;抗菌織物及其抗菌性能的評價[J];上海紡織科技;2005年03期
7 鄭華英,周璇,刁平,周軍波,龔潔,曾晶,夏江,吳林;定時暴露法檢測抗菌織物的效果評價[J];中國公共衛(wèi)生;2005年10期
8 Benjamin D.Tanner;;抗菌織物——抗菌素耐藥性時代的爭論和機(jī)遇[J];中國纖檢;2010年02期
9 敖利民;鄭元生;;鍍銀纖維抗菌織物設(shè)計方案探討[J];棉紡織技術(shù);2011年04期
10 趙家祥;日本抗菌織物發(fā)展調(diào)研[J];棉紡織技術(shù);1995年06期
相關(guān)會議論文 前6條
1 李新武;李濤;孫守紅;舒軍;袁洽;;振蕩燒瓶試驗在非溶出性抗菌織物抗菌效果檢測中的應(yīng)用[A];'2001功能性紡織品及納米技術(shù)應(yīng)用研討會論文集[C];2001年
2 劉倩;李宏偉;;耐久性抗菌織物的研究進(jìn)展[A];第八屆功能性紡織品及納米技術(shù)研討會論文集[C];2008年
3 李武;李青山;王新偉;;負(fù)離子系列產(chǎn)品的抗菌性能研究[A];第六屆功能性紡織品及納米技術(shù)應(yīng)用研討會論文集[C];2006年
4 楊曉君;邢彥軍;戴瑾瑾;;溶膠-凝膠法制備抗菌織物的研究[A];第六屆全國印染后整理學(xué)術(shù)研討會論文集[C];2005年
5 周璐瑛;;納米ZnO防紫外與抗菌織物的研究[A];'2001功能性紡織品及納米技術(shù)應(yīng)用研討會論文集[C];2001年
6 張正君;鄧寶祥;鄧樺;任瑋;;納米TiO_2在抗菌紡織品中的應(yīng)用[A];第七屆功能性紡織品及納米技術(shù)應(yīng)用研討會論文集[C];2007年
相關(guān)重要報紙文章 前2條
1 王俊起 鄭華英;抗菌織物 健康幫手[N];健康報;2006年
2 本報記者 信義;讓毛毯遠(yuǎn)離細(xì)菌之?dāng)_[N];中國紡織報;2014年
相關(guān)碩士學(xué)位論文 前6條
1 沙林;環(huán)境友好型抗菌織物研制[D];大連海事大學(xué);2017年
2 郭洋;銀系無機(jī)復(fù)合抗菌劑整理棉類抗菌織物的研究[D];西北大學(xué);2008年
3 王亞平;超細(xì)無機(jī)復(fù)合抗菌劑制備棉類抗菌織物的研究[D];西北大學(xué);2006年
4 李艷;納米無機(jī)抗菌劑及抗菌織物研究[D];西北大學(xué);2002年
5 鄭元生;基于鍍銀纖維的抗菌織物設(shè)計與開發(fā)[D];河北科技大學(xué);2010年
6 宋桂賢;超細(xì)無機(jī)復(fù)合抗菌粉體的制備及其在棉類織物中的應(yīng)用研究[D];西北大學(xué);2007年
,本文編號:1704429
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1704429.html