薄壁毛細(xì)管圓環(huán)閃光對焊成形過程數(shù)值模擬
本文選題:不銹鋼 切入點(diǎn):毛細(xì)管圓環(huán) 出處:《南昌航空大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:薄壁不銹鋼毛細(xì)管圓環(huán)是廣泛使用于高溫、高壓、酸堿弱腐蝕性環(huán)境的密封元件,在制造此類毛細(xì)管圓環(huán)時(shí),通常是將直管繞彎成環(huán)狀,再利用焊接的方法將對口端面焊接起來,形成完整的封閉圓環(huán)。因此毛細(xì)管圓環(huán)的焊接方法和接頭部位的性能成為了其密封性能好壞的關(guān)鍵。而閃光對焊由于其自身的特點(diǎn)和優(yōu)勢被廣泛應(yīng)用于該類環(huán)型件的對接。故本文針對薄壁不銹鋼毛細(xì)管圓環(huán),利用有限元軟件ABAQUS模擬其閃光對焊的成形過程,并分析了工藝參數(shù)對焊件接頭成形的影響。基于薄壁不銹鋼毛細(xì)管圓環(huán)(1Cr18Ni9Ti)的基本力學(xué)性能參數(shù),建立了材料的本構(gòu)模型(Johnson-Cook模型)。解決了在建立薄壁不銹鋼毛細(xì)管圓環(huán)閃光對焊模型的過程中關(guān)于算法選擇、幾何模型建立、單元類型選擇與網(wǎng)格劃分、載荷和邊界條件等關(guān)鍵技術(shù)問題;贏BAQUS/Explicit模塊,建立了兼顧模擬精度和計(jì)算效率的薄壁不銹鋼毛細(xì)管圓環(huán)閃光對焊成形過程的三維彈塑性有限元模型,并通過實(shí)驗(yàn)驗(yàn)證了模型的可靠性。在所建立的薄壁不銹鋼毛細(xì)管圓環(huán)閃光對焊的有限元模型的基礎(chǔ)上,系統(tǒng)地研究了焊接成形過程的應(yīng)力應(yīng)變以及焊件上質(zhì)點(diǎn)位移的分布和變化規(guī)律。研究發(fā)現(xiàn),焊件上的等效應(yīng)力、等效塑性應(yīng)變均隨成形過程不斷增大,且除距離對口端面0.2 mm及其附近區(qū)域出現(xiàn)軸向拉應(yīng)力外,焊件其余部位全部受軸向壓應(yīng)力。等效塑性應(yīng)變與焊件質(zhì)點(diǎn)位移的分布規(guī)律相似,均在焊件對口端面處出現(xiàn)最大值,等效塑性應(yīng)變最大值為1.102;谏鲜鋈S有限元模型,研究了工藝參數(shù)對焊接成形過程接頭部位飛邊高度和斜度的影響,進(jìn)而分析工藝參數(shù)對焊件接頭成形的影響。研究發(fā)現(xiàn),頂鍛速度對焊件的接頭成形影響不大;頂鍛留量對接頭成形的影響較為顯著,頂鍛留量越大則接頭部位的塑性變形程度也越大,且當(dāng)頂鍛留量小于1.6mm時(shí),焊件接頭部位的塑性變形程度明顯不足,不利于接頭的成形;調(diào)伸長度對焊接過程的溫度場和接頭部位的成形都有影響,調(diào)伸長度越小,焊件軸向上的溫度場分布越窄,當(dāng)調(diào)伸長度為2.3 mm時(shí),焊件接頭部位的塑性變形程度最大,成形效果最好。
[Abstract]:Thin-walled stainless steel capillary rings are widely used in high-temperature, high-pressure, acid-base weakly corrosive environments. In the manufacture of such capillary rings, the straight tube is usually wound into a ring. Using welding methods to weld the face of the corresponding end, Therefore, the welding method of capillary ring and the performance of joint position become the key to the sealing performance of capillary ring. Flash butt welding is widely used in this kind of ring type because of its own characteristics and advantages. Therefore, this article aims at thin wall stainless steel capillary ring, The forming process of flash butt welding was simulated by finite element software ABAQUS, and the influence of process parameters on joint forming was analyzed. Based on the basic mechanical properties of thin wall stainless steel capillary ring 1Cr18Ni9Ti. The Johnson-Cook model of material is established, which solves the problems of algorithm selection, geometric model establishment, element type selection and mesh generation in the process of establishing thin wall stainless steel capillary ring flash butt welding model. Based on ABAQUS/Explicit module, a three-dimensional elastic-plastic finite element model of thin-walled stainless steel capillary ring flash butt welding forming process is established based on ABAQUS/Explicit module. The reliability of the model is verified by experiments. Based on the established finite element model of capillary ring flash butt welding of thin-walled stainless steel, The stress and strain of welding forming process and the distribution and variation law of particle displacement on welding parts are studied systematically. It is found that the equivalent stress and plastic strain increase with the forming process. Except for the axial tensile stress of 0.2 mm from the opposite end face and its adjacent area, all the other parts of the welding piece are subjected to axial compression stress. The equivalent plastic strain is similar to the distribution law of the particle displacement of the welding piece, and the maximum value appears at the opposite end face of the welding piece, and the equivalent plastic strain is similar to the distribution law of the particle displacement of the welding piece. The maximum value of equivalent plastic strain is 1.102. Based on the above three-dimensional finite element model, the effects of process parameters on flange height and slope of welding joint are studied, and the effects of process parameters on welding joint forming are analyzed. The effect of forging speed on joint forming is not significant, and the effect of top forging retention on joint forming is more significant, and the plastic deformation degree of joint is larger with the increase of top forging retention, and when the top forging retention is less than 1.6 mm, the plastic deformation degree of joint is larger when the top forging retention is less than 1.6 mm. The degree of plastic deformation of the joint is obviously insufficient, which is not conducive to the forming of the joint, and the adjusting elongation has an effect on the temperature field of the welding process and the forming of the joint. The smaller the adjusting elongation, the narrower the distribution of the temperature field in the axial direction of the welding piece. When the elongation is 2.3 mm, the plastic deformation is the largest and the forming effect is the best.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG457.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 惠亞軍;李文遠(yuǎn);潘輝;劉錕;陳斌;崔陽;吳科敏;;閃光對焊焊接380CL鋼輪輞焊縫開裂原因分析[J];機(jī)械工程材料;2016年10期
2 李蘇;高世一;陰艷超;;管線鋼及閃光對焊技術(shù)的研究現(xiàn)狀與發(fā)展趨勢[J];電焊機(jī);2015年12期
3 許祥平;李恒;王錫嶺;陳恒強(qiáng);;采用中頻逆變電阻焊和閃光對焊焊接圓環(huán)鏈的對比研究[J];江蘇科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年03期
4 王洋;鄭世達(dá);劉正林;尹登峰;高世一;;SUS 304不銹鋼閃光對焊工藝研究[J];熱加工工藝;2015年01期
5 王曉軍;喬紅梅;夏天東;趙文軍;;Q235鋼筋閃光對焊工藝[J];電焊機(jī);2014年07期
6 郭新剛;宋鵬濤;王永寧;;奧氏體不銹鋼的腐蝕機(jī)理研究[J];科技創(chuàng)新與應(yīng)用;2013年17期
7 李亞娟;李午申;;X80管線鋼環(huán)焊縫接頭殘余應(yīng)力的數(shù)值模擬[J];焊接學(xué)報(bào);2010年06期
8 徐小帆;劉利;關(guān)志科;;鋼軌閃光對焊溫度場分布的有限元分析[J];上海交通大學(xué)學(xué)報(bào);2008年05期
9 馮秋元;李廷舉;丁志敏;金俊澤;;閃光對焊技術(shù)研究現(xiàn)狀及發(fā)展趨勢[J];材料科學(xué)與工藝;2008年01期
10 張根元;陳洪蓮;徐邁里;文芳;;軸對稱件閃光對焊溫度場有限元分析[J];熱加工工藝;2007年15期
相關(guān)博士學(xué)位論文 前2條
1 閆德俊;高速列車底架用鋁合金焊接接頭疲勞裂紋擴(kuò)展特性[D];哈爾濱工業(yè)大學(xué);2011年
2 崔曉芳;箱型結(jié)構(gòu)焊接變形預(yù)測、控制及應(yīng)用[D];大連交通大學(xué);2005年
相關(guān)碩士學(xué)位論文 前6條
1 梁榮環(huán);TC4鈦合金線性摩擦焊接過程數(shù)值模擬研究[D];南昌航空大學(xué);2014年
2 陳希;航空發(fā)動機(jī)用金屬封嚴(yán)環(huán)設(shè)計(jì)與性能分析研究[D];南昌航空大學(xué);2014年
3 趙紅光;UN-150ZB鋼軌閃光焊機(jī)的軟件優(yōu)化與完善[D];西南交通大學(xué);2012年
4 李星星;304不銹鋼本構(gòu)模型參數(shù)識別研究[D];華中科技大學(xué);2012年
5 王璐;鍍鋅鋼板點(diǎn)焊溫度場及動態(tài)過程的數(shù)值模擬[D];上海交通大學(xué);2007年
6 吳元峰;低碳鋼電阻點(diǎn)焊過程的數(shù)值模擬[D];合肥工業(yè)大學(xué);2005年
,本文編號:1606768
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1606768.html