化學(xué)與物理交聯(lián)協(xié)同增韌聚丙烯酰胺水凝膠的制備和性質(zhì)表征
本文選題:化學(xué)交聯(lián) 切入點:物理交聯(lián) 出處:《長春工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:水凝膠作為一種親水的凝膠具有相當(dāng)高的含水量,其含水量與生物組織相似(70%)甚至可達到更高。水凝膠具有良好的生物相容性,且表現(xiàn)出良好的柔韌性,刺激響應(yīng)能力,以上性能為水凝膠在生物領(lǐng)域,組織工程方向的應(yīng)用奠定了基礎(chǔ)。然而,由于水凝膠含水量較高,其機械性能相對較差,嚴重的限制了水凝膠的應(yīng)用。傳統(tǒng)的化學(xué)交聯(lián)水凝膠通過永久,不可逆的共價鍵相互連接的聚合物鏈組成,這通常使水凝膠較脆,透明性差,網(wǎng)絡(luò)結(jié)構(gòu)斷裂后不能自愈。但是,化學(xué)交聯(lián)網(wǎng)絡(luò)結(jié)構(gòu)易于調(diào)整,可以改變最終材料的機械性能。因此,傳統(tǒng)的化學(xué)交聯(lián)網(wǎng)絡(luò)結(jié)構(gòu)不可以被忽略,要巧妙加以改善就可以得到強韌水凝膠。在本文中,我們將物理交聯(lián)與化學(xué)交聯(lián)兩種交聯(lián)方式都引入到水凝膠網(wǎng)絡(luò)體系中,制備強韌的,具有抗疲勞性能和快速自回復(fù)性能的水凝膠。在第一部分實驗中,我們將疏水締合這種交聯(lián)方式引入到水凝膠網(wǎng)絡(luò)中作為物理交聯(lián)中心,同時以N,N′-亞甲基雙丙烯酰胺作為化學(xué)交聯(lián)劑,通過自由基聚合方式與親水主鏈聚丙烯酰胺相鏈接,作為化學(xué)交聯(lián)中心。在雜化水凝膠網(wǎng)絡(luò)體系中,化學(xué)交聯(lián)為水凝膠網(wǎng)絡(luò)提供了一個剛性骨架,來支撐著整個水凝膠網(wǎng)絡(luò)基質(zhì),疏水締合作為物理交聯(lián)中心能夠通過膠束變形和甲基丙烯酸月桂酯(LMA)鏈的可逆解纏來有效的耗散能量,使得這種雜化水凝膠在壓縮應(yīng)變?yōu)?5%時,壓縮強度可以達到8 MPa。此外,在連續(xù)壓縮循環(huán)測試中,雜化水凝膠展現(xiàn)出了時間依賴性,快速自恢復(fù)性,抗疲勞性質(zhì)。在第二部分實驗中,我們期望得到強韌,具有拉伸性能的水凝膠,因此,我們改進了物理交聯(lián)中心,并調(diào)節(jié)了化學(xué)交聯(lián)點的密度,從而得到了具有高拉伸強度,高斷裂伸長率的具有快速自恢復(fù)性和抗疲勞性質(zhì)的由甲基丙烯酸月桂酯-聚丙烯酸丁酯微球(LMA-PBA)混合膠束誘導(dǎo)的強韌雜化水凝膠(LMA-PBA+MBA gel)。在這個雜化水凝膠網(wǎng)絡(luò)體系中,化學(xué)交聯(lián)仍然作為一個剛性骨架支撐著整個水凝膠網(wǎng)絡(luò)基質(zhì),LMA-PBA混合膠束作為物理交聯(lián)點,可通過膠束形變,LMA鏈的可逆解纏,PBA軟粒子變形以及LMA-PBA間的可逆交聯(lián)來耗散大量的能量,從而將有效的能量耗散機制引入到水凝膠網(wǎng)絡(luò)體系中,使得這種雜化水凝膠具有相當(dāng)好的拉伸性能,最大拉伸應(yīng)力可達到1.4 MPa,斷裂伸長率可達到2500%,同時具有快速自恢復(fù)性,抗疲勞性。這兩種通過物理交聯(lián)與化學(xué)交聯(lián)協(xié)同作用的,具有快速自恢復(fù)性,抗疲勞性的雜化水凝膠均可以拓展在負載材料方向的生物領(lǐng)域的應(yīng)用,例如,水凝膠軟骨、筋腱,人造肌肉和組織工程等。
[Abstract]:As a hydrophilic gel, hydrogel has very high water content, and its water content is even higher than that of biological tissue. Hydrogel has good biocompatibility, good flexibility and irritability. These properties lay a foundation for the application of hydrogels in biological and tissue engineering fields. However, the mechanical properties of hydrogels are relatively poor due to their high water content. The application of hydrogels is severely restricted. Traditional chemically crosslinked hydrogels are made up of permanent, irreversible, covalently linked polymer chains, which usually make hydrogels brittle, less transparent, and unable to heal themselves after the network breaks. The chemical crosslinking network structure is easy to adjust and can change the mechanical properties of the final material. Therefore, the traditional chemical crosslinking network structure can not be ignored. Both physical and chemical crosslinking methods are introduced into the hydrogel network system to prepare strong and tough hydrogels with fatigue resistance and fast self-recovery. In the first part of the experiment, The hydrophobically associating crosslinking method is introduced into hydrogel networks as the physical crosslinking center, and the hydrophilic polyacrylamide is linked to the hydrophilic main chain polyacrylamide by means of free radical polymerization, using NNT-methylene bisacrylamide as the chemical crosslinking agent. In hybrid hydrogel networks, chemical crosslinking provides a rigid skeleton for hydrogel networks to support the entire hydrogel network matrix. Hydrophobic association, as a physical crosslinking center, can effectively dissipate energy through micelle deformation and reversible unwinding of the LMA-methacrylate chain, resulting in the compression strength of the hybrid hydrogel reaching 8 MPA when the compression strain is 95%. In continuous compression cycle testing, hybrid hydrogels exhibit time-dependent, fast self-recovery, anti-fatigue properties. In the second part of the experiment, we expect to obtain strong and tough hydrogels with tensile properties, so, We improved the physical crosslinking centers and adjusted the density of the chemical crosslinking points, which resulted in high tensile strength. A strong and toughened hybrid hydrogel, LMA-PBA MBA gelatin, with high elongation at break, which has the properties of rapid self-recovery and fatigue resistance, is induced by the mixed micelle of lauryl methacrylate and polybutyl acrylate microspheres (LMA-PBA). In this hybrid hydrogel network system, Chemical crosslinking is still used as a rigid skeleton to support the whole hydrogel network matrix LMA-PBA mixed micelles as physical crosslinking points, which can dissipate a large amount of energy through the reversible unwinding of the LMA-PBA chains and the deformation of soft particles in the LMA-PBA. Thus, the effective energy dissipation mechanism is introduced into the hydrogel network system, which makes the hybrid hydrogel have quite good tensile properties, the maximum tensile stress can reach 1.4 MPA, the elongation at break can reach 2500, and the hybrid hydrogel has a rapid self-recovery. Fatigue resistance. Both of these hybrid hydrogels, which combine physical and chemical crosslinking with quick self-healing, fatigue resistance, can be extended to biological applications in the direction of loaded materials, such as hydrogel cartilage, tendons, Artificial muscle and tissue engineering, etc.
【學(xué)位授予單位】:長春工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O648.17
【相似文獻】
相關(guān)期刊論文 前5條
1 曾鈁,童真,楊燕銀;聚(N-異丙基丙烯酰胺)水溶液物理交聯(lián)網(wǎng)絡(luò)的形成過程[J];中國科學(xué)(B輯 化學(xué));2000年04期
2 楊榮杰,喬麗坤,李雪春,何吉宇;物理交聯(lián)聚乙烯醇凝膠中氫鍵作用研究[J];北京理工大學(xué)學(xué)報;2004年11期
3 劉捷;劉廣力;李霞;劉琳;湯克勇;;物理交聯(lián)剛果紅—聚乙烯醇凝膠膜的敏感特性研究[J];傳感器與微系統(tǒng);2014年06期
4 左翔;蔡烽;劉曉敏;楊暉;沈曉冬;;一種新型物理交聯(lián)型凝膠聚合物電解質(zhì)的制備與表征[J];物理化學(xué)學(xué)報;2013年01期
5 楊猛;;水凝膠的制備研究進展[J];化學(xué)工程師;2013年05期
相關(guān)會議論文 前3條
1 時富寬;謝續(xù)明;;具有高延展性和自修復(fù)能力的雙重物理交聯(lián)水凝膠[A];2013年全國高分子學(xué)術(shù)論文報告會論文摘要集——主題H:醫(yī)用高分子[C];2013年
2 張青松;劉曉云;查劉生;馬敬紅;梁伯潤;;凝膠微粒對物理交聯(lián)水凝膠熱敏性的影響[A];2007年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2007年
3 李沖;韓秋燕;關(guān)英;張擁軍;;高強度殼聚糖物理水凝膠的制備研究[A];2013年全國高分子學(xué)術(shù)論文報告會論文摘要集——主題I:生物高分子與天然高分子[C];2013年
相關(guān)碩士學(xué)位論文 前2條
1 劉昕;化學(xué)與物理交聯(lián)協(xié)同增韌聚丙烯酰胺水凝膠的制備和性質(zhì)表征[D];長春工業(yè)大學(xué);2017年
2 黃梅;冷凍解凍法聚乙烯醇凝膠體系研究[D];蘇州大學(xué);2012年
,本文編號:1599459
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1599459.html