聚吡咯包覆納米多元金屬化合物陣列的制備及電化學(xué)儲(chǔ)能研究
本文關(guān)鍵詞: 聚吡咯 鉬酸鈷 硫鈷鎳 電極材料 超級電容器 鋰離子電池 出處:《浙江理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:電極材料是決定超級電容器和鋰離子電池等新型儲(chǔ)能器件性能的關(guān)鍵因素,也是目前儲(chǔ)能材料領(lǐng)域的研究熱點(diǎn)。在眾多電極材料中,過渡金屬Ni、Co和Mo的化合物CoMoO_4和NiCo_2S_4材料具有理論比容量高、制備工藝簡單、環(huán)境友好等優(yōu)點(diǎn),吸引了研究者的興趣。但是,CoMoO_4和NiCo_2S_4本身的電子電導(dǎo)率較低、放電容量和倍率性能不理想;同時(shí)在參與電化學(xué)可逆反應(yīng)時(shí)材料內(nèi)部會(huì)反復(fù)產(chǎn)生較大的應(yīng)力,長期循環(huán)之后材料容易粉化失活脫落。為了改善CoMoO_4和NiCo_2S_4的比容量和循環(huán)壽命,本文設(shè)計(jì)了CoMoO_4和NiCo_2S_4的納米陣列結(jié)構(gòu),并將聚吡咯包覆在其表面,利用聚吡咯的高電導(dǎo)率和優(yōu)異穩(wěn)定性來改善CoMoO_4和NiCo_2S_4材料的倍率性能、比容量和循環(huán)壽命,主要研究內(nèi)容如下:(1)采用水熱法和高溫煅燒技術(shù)在泡沫鎳基底上制備CoMoO_4納米片自組裝柱陣列,然后再利用電化學(xué)聚合技術(shù)將聚吡咯包覆在CoMoO_4納米片自組裝柱陣列上。通過XRD和FTIR表征聚吡咯包覆CoMoO_4復(fù)合材料物相,SEM測試發(fā)現(xiàn)復(fù)合材料呈現(xiàn)出納米級厚度的聚吡咯完整一體地包覆在CoMoO_4柱陣列上。將復(fù)合材料組裝成三電極體系測試它的贗電容性能發(fā)現(xiàn),在電流密度為200 mA g-1的條件下,聚吡咯包覆CoMoO_4復(fù)合材料比電容為1195 F g-1,高于未包覆CoMoO_4的1173 F g-1,充放電循環(huán)3000次后,聚吡咯包覆CoMoO_4復(fù)合材料的比電容(1024 F g-1)仍保持初始值的85.7%,而未包覆CoMoO_4僅剩余52%。聚吡咯包覆CoMoO_4材料表現(xiàn)出更高的比容量,更小的內(nèi)阻,在充放電過程中的結(jié)構(gòu)更加穩(wěn)定。(2)采用兩步水熱法在泡沫鎳基底上直接生長NiCo_2S_4納米管陣列,然后使用電化學(xué)聚合技術(shù)在NiCo_2S_4納米管陣列上包覆聚吡咯。通過XRD和FTIR測試分別表征復(fù)合材料的物相,SEM和TEM測試揭示了復(fù)合材料呈現(xiàn)出8 nm聚吡咯層完整地包覆在NiCo_2S_4納米管陣列上。將復(fù)合材料組裝成三電極體系測試它的贗電容性能發(fā)現(xiàn),聚吡咯包覆NiCo_2S_4復(fù)合材料的放電比電容與未包覆的相比從1242 F g-1增長到1493 F g-1,增加了20%。在倍率性能測試中,電流密度為24 mA cm-2時(shí),聚吡咯包覆NiCo_2S_4復(fù)合材料的平均比電容達(dá)到了未包覆的2倍。當(dāng)電流密度從大電流回歸到1 mA cm-2時(shí),聚吡咯包覆NiCo_2S_4的平均比電容達(dá)到了初始容量的98%,即1605 F g-1,而未包覆的保持率只有82%。所制備復(fù)合材料作為超級電容器電極材料具有較高的比容量,良好的倍率性能和電化學(xué)穩(wěn)定性。(3)本文還研究了聚吡咯包覆CoMoO_4和聚吡咯包覆NiCo_2S_4作為鋰離子電池陽極材料的電化學(xué)儲(chǔ)能性能。在0.2 C電流密度下,聚吡咯包覆CoMoO_4復(fù)合材料的比容量達(dá)到了1084 mAh g-1,比未包覆的CoMoO_4材料比容量高22%。在0.2 C電流密度下,100個(gè)循環(huán)后聚吡咯包覆NiCo_2S_4納米管陣列復(fù)合材料比容量保持率為85%,未包覆的NiCo_2S_4材料保持率為65%。聚吡咯的包覆可以提高CoMoO_4和NiCo_2S_4陣列電極材料的電化學(xué)儲(chǔ)能性能和循環(huán)穩(wěn)定性,這主要是因?yàn)楦唠妼?dǎo)率的聚吡咯的包覆提高了復(fù)合材料整體的電子電導(dǎo)率,減弱了Li~+脫嵌過程中CoMoO_4和NiCo_2S_4材料結(jié)構(gòu)的破壞和粉化,顯示了兩種材料復(fù)合之后的包覆效應(yīng)和協(xié)同效應(yīng)。
[Abstract]:The electrode material is decided by super capacitor and lithium ion battery key factors such as new energy storage devices, energy storage is currently the research hotspot in the field of materials. Among the electrode materials, transition metal Ni, Co and Mo compounds CoMoO_4 and NiCo_2S_4 material has high theoretical capacity, simple preparation process, friendly environment. Has attracted the interest of researchers. However, the electronic conductivity of CoMoO_4 and NiCo_2S_4 is low, the discharge capacity and rate performance is not ideal; at the same time to participate in the electrochemical reversible reaction inside the material will repeatedly produced great stress, long cycle after inactivation of powder material is easy to fall off. In order to improve the ratio of NiCo_2S_4 and CoMoO_4 the capacity and cycle life, this paper designs the nano array structure of CoMoO_4 and NiCo_2S_4, and the polypyrrole coated on the surface of modified by polypyrrole with high conductivity and excellent stability The good rate performance CoMoO_4 and NiCo_2S_4 materials, specific capacity and cycle life, the main research contents are as follows: (1) preparation of CoMoO_4 nano self-assembled film pillar arrays on nickel foam substrate by hydrothermal method and calcination technique, then the electrochemical polymerization of polypyrrole coated self-assembly technology column array in CoMoO_4 nanosheets through XRD and FTIR characterization of polypyrrole coated CoMoO_4 composites, SEM test showed that the composite exhibits the nanometer thickness of polypyrrole coated on the CoMoO_4 column to complete one array. The composite materials are assembled into the three electrode system testing pseudocapacitive performance it is found that the current density of 200 mA under the conditions of g-1 polypyrrole coated CoMoO_4 composite material specific capacitance of 1195 F g-1, than the uncoated CoMoO_4 1173 F g-1 after 3000 charge and discharge cycles of polypyrrole coated CoMoO_4 composite material specific capacitance (1024 F g- 1) still maintain the initial value of 85.7%, and not only the remaining 52%. CoMoO_4 coated with polypyrrole coated CoMoO_4 materials exhibit higher specific capacity, smaller internal resistance, the structure in the process of charging and discharging more stable. (2) NiCo_2S_4 nanotube arrays grown directly on nickel foam substrate by two step hydrothermal method, and then use the the electrochemical polymerization of polypyrrole coating technology in NiCo_2S_4 nanotube arrays were characterized. The composite material through XRD and FTIR test, SEM test and TEM reveals that the composite exhibits 8 nm complete polypyrrole layer coated on the NiCo_2S_4 nanotube array. The composite materials are assembled into three electrode system testing pseudocapacitive performance it is found that the polypyrrole coated NiCo_2S_4 composites than uncoated discharge capacitance and compared from 1242 F to 1493 F g-1 growth g-1, 20%. increase in rate performance test, the current density is 24 mA cm-2, The polypyrrole coated NiCo_2S_4 composite average specific capacitance reached 2 times without coating. When the current density return from high current to 1 mA cm-2, the average specific capacitance of polypyrrole coated NiCo_2S_4 reached the initial capacity of 98% F, 1605 g-1, and the retention rate of only uncoated 82%. composites prepared as a super capacitor electrode materials with high specific capacity, rate capability and good electrochemical stability. (3) this paper also studies the polypyrrole coated CoMoO_4 and polypyrrole coated NiCo_2S_4 as electrochemical anode material for lithium ion battery performance. Under the current density of 0.2 C, the polypyrrole coated CoMoO_4 composites than the capacity reached 1084 mAh g-1, than those of uncoated CoMoO_4 material has high specific capacity of 22%. under the current density of 0.2 C, after 100 cycles of polypyrrole coated NiCo_2S_4 nanotube array composite material than the capacity retention rate was 85%, The uncoated NiCo_2S_4 material retention rate of 65%. coated with polypyrrole can improve the electrochemical CoMoO_4 and NiCo_2S_4 array electrode material performance and cycle stability, this is mainly because of the high conductivity of polypyrrole coating improves the electronic conductivity of the composites decreased overall, Li~+ damage and deintercalate powder process CoMoO_4 and NiCo_2S_4 material structure that shows the effect of coated composite material after two and synergies.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM53;TM912;TB332
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 冷波,葛樹琴,劉紅波;聚吡咯的合成及電流變性能的研究[J];材料開發(fā)與應(yīng)用;2002年02期
2 黃美榮,王健,李新貴;聚吡咯衍生物的合成及液晶性能[J];高分子通報(bào);2003年04期
3 葛東濤,王紀(jì)孝,王世昌;聚吡咯納米線(管)的合成[J];化學(xué)進(jìn)展;2003年06期
4 陳泳,唐威,朱緒飛;合成工藝對聚吡咯電導(dǎo)率及可溶性的影響[J];化工時(shí)刊;2003年11期
5 王九,黃偉九,陳波水,晏華,李曉東;聚吡咯在幾種連續(xù)介質(zhì)中的電流變效應(yīng)[J];機(jī)械工程材料;2004年10期
6 李永舫;導(dǎo)電聚吡咯的研究[J];高分子通報(bào);2005年04期
7 程賢u&,林音,林俊鴻,潘德源;化學(xué)聚合法制備電容器用聚吡咯[J];四川大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年S1期
8 莫尊理;左丹丹;陳紅;孫銀霞;張平;;納米石墨薄片/聚吡咯復(fù)合材料的制備及導(dǎo)電性能[J];無機(jī)化學(xué)學(xué)報(bào);2007年02期
9 王杰;徐友龍;陳曦;杜顯鋒;李喜飛;;電化學(xué)法制備高密度導(dǎo)電聚吡咯的性能研究[J];物理學(xué)報(bào);2007年07期
10 周媛媛;余e,
本文編號:1519878
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1519878.html