廢鋰電池資源化技術(shù)及污染控制研究
本文關(guān)鍵詞: 廢鈷酸鋰電池 資源再生 酸浸出 萃取 污染控制 出處:《西南交通大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:鈷酸鋰電池廣泛應(yīng)用于各類電子產(chǎn)品,是日常生活中必不可少的移動(dòng)電源,但是鋰電池的大量使用使其廢棄量也在急劇增長,廢鋰電池中含有鈷、鋰、鋁、銅、鐵等有價(jià)值的可回收金屬,同時(shí)鋰電池中還含有電解質(zhì)、有機(jī)粘結(jié)劑等有毒成分,鋰電池的大量報(bào)廢不僅造成資源浪費(fèi),還造成許多環(huán)境問題,因此,廢鋰電池的資源再生正成為亟需處理和關(guān)注的問題;在廢鋰電池資源再生過程中,課題組不僅關(guān)注鈷、鋰的回收,同時(shí)需要降低工藝能耗,提高清潔生產(chǎn)水平,對(duì)污染物減量化進(jìn)行研究,以達(dá)到廢鋰電池回收經(jīng)濟(jì)效益最大化和污染物排放最小化。本文通過建立廢鋰電池再生資源化技術(shù)體系,對(duì)廢鋰電池進(jìn)行資源化處理:首先將廢鋰電池進(jìn)行放電處理之后,對(duì)其進(jìn)行手工拆解獲取電池正極,采用有機(jī)溶劑NMP(N-甲基-2-吡咯烷酮)溶解有機(jī)粘結(jié)劑PVDF使正極上的活性材料LiCoO_2與鋁箔分離,得到含活性物質(zhì)LiCoO_2的黑色粉末,再用H_2S04+H_2O_2酸體系對(duì)LiCoO_2粉末進(jìn)行酸浸出,使用萃取劑P204對(duì)浸提液中Co~(2+)、Li~+進(jìn)行萃取除雜,得到富Co~(2+)、Li~+的萃余液,再用萃取劑P507對(duì)Co~(2+)、Li~+進(jìn)行萃取分離,Co~(2+)進(jìn)入有機(jī)相,Li~+進(jìn)入水相,最后使用HC1反萃Co~(2+),得到較純CoCl_2,用飽和Na2C03沉淀Li~+,得到沉淀Li_2CO_3,從而達(dá)到回收Co、Li的目的。廢鋰電池資源再生過程中的主要工藝包括:廢鋰電池預(yù)處理工藝,H_2S04+H_2O_2酸浸工藝,有機(jī)溶劑萃取分離工藝,HC1反萃工藝。經(jīng)預(yù)處理實(shí)驗(yàn)得出:飽和食鹽水可對(duì)廢鋰電池進(jìn)行放電完全;有機(jī)溶劑NMP能使正極活性物質(zhì)LiCoO_2與鋁箔分離,最佳固液比為1:4。H_2S04+H_2O_2酸體系對(duì)含LiCoO_2黑色粉末酸浸實(shí)驗(yàn)得出:硫酸濃度、浸提液溫度、反應(yīng)時(shí)間、液固比是影響Co~(2+)、Li~+浸出的重要因素,最優(yōu)浸提Co~(2+)、Li~+條件為:硫酸濃度2mol/L、浸提液溫度60℃、反應(yīng)時(shí)間1h、固液比1:15,最優(yōu)條件下鈷、鋰的浸出率均達(dá)到99%。P_204萃取Co~(2+)、Li~+實(shí)驗(yàn)得出:影響P204萃取的主要因素有萃取pH,相比。P204最優(yōu)萃取除雜條件為:pH=2.58,相比為1:1,此時(shí)P204萃取鈷、鋰的萃取率達(dá)到95%以上,雜質(zhì)離子基本去除,錳、鎂、鋅的去除率均達(dá)到80%以上;P507萃取分離鈷、鋰實(shí)驗(yàn)得出:萃取pH,相比是影響P507萃取分離鈷、鋰的主要因素,最優(yōu)萃取分離條件為:pH=5.46,相比為1:1,此時(shí)P507對(duì)鈷的萃取率能達(dá)到98%。富鈷有機(jī)相采用HC1反萃,得到CoCl2溶液,其最優(yōu)反萃HC1濃度為3mol/L,鈷的反萃率達(dá)到98%;富鋰水相采用飽和碳酸鈉進(jìn)行沉淀回收鋰,沉淀率在95%以上。針對(duì)廢鋰電池再生污染物,利用NaOH溶液吸收拆解過程中揮發(fā)的電解液從而對(duì)其進(jìn)行無害化處理;計(jì)算H_2SO_4+H_2O_2酸體系下不同硫酸濃度浸出鈷、鋰條件下的酸消耗與剩余酸,控制合適酸量;分析錳、鎂、鋅三種金屬在H_2SO_4+H_2O_2酸體系中的浸出率及萃取劑P204對(duì)錳、鎂、鋅的去除。酸消耗量和剩余量實(shí)驗(yàn)得出最優(yōu)浸提Co~(2+)、Li~+條件下,100ml實(shí)驗(yàn)樣品合適酸用量為:17.5ml,剩余酸量為6.5ml;通過測(cè)定錳、鎂、鋅三種金屬在H_2SO_4+H_2O_2酸體系中的浸出率,得出三種金屬均被浸出進(jìn)入料液,浸出率均達(dá)到80%以上;在P204萃取除雜時(shí),Mn~(2+)、Zn~(2+)去除率均能達(dá)到95%以上,Mg~(2+)去除率能達(dá)到80%,采用NaOH溶液處理含錳、鎂、鋅離子的廢液,使其生成穩(wěn)定Mn(OH)_2、Mg(OH)_2、Zn(OH)_2沉淀而被去除。
[Abstract]:Cobalt acid lithium is widely used in all kinds of electronic products, mobile power supply is essential in daily life, but the extensive use of lithium battery to its waste is increasing sharply, the waste lithium battery containing lithium, cobalt, aluminum, copper, iron and other valuable metals Recyclable, but also contains the electrolyte of lithium battery, organic binder and other toxic ingredients, a large number of scrapped lithium battery is not only a waste of resources, but also caused many environmental problems, therefore, recycling waste of lithium battery is becoming an urgent and concern; in the process of recycling waste lithium battery, the research group is concerned not only with cobalt, lithium recovery, and the need to reduce the energy consumption of technology and improve the level of clean production, carry out the research on pollution reduction, in order to achieve the maximum economic benefits of lithium battery recycling waste and minimize pollutant emissions. In this paper, through the establishment of waste lithium battery renewable resources technology system, The waste lithium batteries for recycling treatment: after the waste lithium battery discharge process and manual dismantling of the acquisition of the battery cathode, using organic solvent NMP (N- methyl -2- pyrrolidone) dissolved organic binder PVDF to active material LiCoO_2 and aluminum foil anode separation, black powder containing active substance LiCoO_2 then, H_2S04+H_2O_2 acid system for acid leaching of LiCoO_2 powder, the extraction liquid using Co~ extraction agent P204 (2+), Li~+ extraction and impurity removal, get rich Co~ (2+), raffinate Li~+, and extraction agent P507 on Co~ (2+), Li~+ Co~ (2+) extraction. Into the organic phase, Li~+ into the aqueous phase, and finally use the HC1 stripping of Co~ (2+), with pure CoCl_2, Li~+ with saturated Na2C03 precipitation, the precipitation of Li_2CO_3, so as to achieve the recovery of Co, Li. The purpose of waste lithium battery recycling including the main process of waste lithium battery pretreatment Process, H_2S04+H_2O_2 acid leaching process, separation process of organic solvent extraction, HC1 stripping process. The pretreatment experiment showed: saturated salt water of waste lithium batteries discharge completely; organic solvent can make NMP cathode active material LiCoO_2 and the separation of aluminum foil, the best ratio of solid to liquid 1: 4.H_2S04+H_2O_2 acid system on the leaching experiments with black LiCoO_2 powder: acid sulfuric acid concentration, extraction temperature, reaction time, ratio of liquid to solid is Co~ (2+), an important factor of Li~+ leaching, the optimal extraction of Co~ (2+), Li~+ condition: sulfuric acid concentration 2mol/L, extraction temperature 60 C, reaction time 1H, the optimal conditions of solid-liquid ratio at 1:15. Under the cobalt, lithium leaching rate of 99%.P_204 extraction of Co~ (2+), Li~+ tests show that the main factors affecting the extraction of pH P204 extraction,.P204 extraction and impurity removal compared to optimal conditions: pH=2.58, compared to 1:1, the P204 extraction of cobalt, lithium extraction rate reached more than 95% impurities Ion removal, manganese, magnesium, zinc removal rate reached more than 80%; P507 extraction separation of cobalt, lithium extraction experiments show that: pH, is compared with the effect of P507 extraction of cobalt, lithium main factors, the optimal extraction conditions were: pH=5.46, compared to 1:1 P507 on time, the extraction rate of cobalt 98%. cobalt rich organic phase by HC1 stripping, CoCl2 solution, the optimal concentration of HC1 was 3mol/L stripping, the stripping rate of cobalt reached 98%; lithium rich aqueous sodium carbonate by precipitation with saturated lithium recovery, precipitation rate is above 95%. The regeneration of waste lithium battery, using NaOH electrolyte solution absorption of volatile dismantling in the process of harmless treatment of H_2SO_4+H_2O_2 acid; calculation system under different concentration of sulfuric acid leaching of cobalt, acid consumption and residual acid lithium under the condition of proper control of acid; analysis of manganese, magnesium, zinc leaching rate of three kinds of metal in acid system and H_2O_2 H_2SO_4+ The extraction agent P204 on manganese, magnesium, zinc removal. The remaining amount of acid consumption and leaching experiments to obtain the optimal Co~ (2+), Li~+, 100ml experimental samples suitable acid dosage is 17.5ml, residual acid was 6.5ml; the determination of manganese, magnesium, zinc leaching of three kinds of metal in acid system in H_2SO_4+H_2O_2 the rate of three kinds of metals were leached out into the liquid, the leaching rate reached more than 80%; in the P204 extraction and impurity removal, Mn~ (2+), Zn~ (2+) removal rate could reach more than 95%, Mg~ (2+) removal rate can reach 80%, the processing of manganese, magnesium and zinc in NaOH solution. From the waste liquid to produce a stable Mn (OH) _2, Mg (OH) _2, Zn (OH) and removed the precipitation of _2.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X705
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王光旭;李佳;許振明;;廢舊鋰離子電池中有價(jià)金屬回收工藝的研究進(jìn)展[J];材料導(dǎo)報(bào);2015年07期
2 黎宇科;郭淼;嚴(yán)傲;;車用動(dòng)力電池回收利用經(jīng)濟(jì)性研究[J];汽車與配件;2014年24期
3 朱曙光;賀文智;李光明;周旭;張驍君;黃菊文;;酸浸和沉淀組合工藝回收廢鋰離子電池中的鈷和鋰(英文)[J];Transactions of Nonferrous Metals Society of China;2012年09期
4 凌維靖;王琴;張寶春;李偉鏗;;廢舊鋰離子電池的出路探討[J];廣州環(huán)境科學(xué);2011年04期
5 趙鵬飛;尹曉瑩;滿瑞林;李珊珊;陳亮;;廢舊鋰離子電池回收工藝研究進(jìn)展[J];電池工業(yè);2011年06期
6 陳亮;唐新村;張陽;瞿毅;王志敏;;從廢舊鋰離子電池中分離回收鈷鎳錳[J];中國有色金屬學(xué)報(bào);2011年05期
7 趙東江;馬松艷;;采用濕法技術(shù)從廢舊鋰離子電池中回收有價(jià)金屬[J];化學(xué)工程師;2011年02期
8 苗蘭冬;;雙甘膦中總磷測(cè)定的消解方法探討[J];四川化工;2010年05期
9 張陽;滿瑞林;王輝;陳亮;;廢舊鋰離子電池中鈷的酸浸過程研究[J];電池工業(yè);2010年01期
10 屈偉平;;鋰電池的發(fā)展概述[J];城市車輛;2009年05期
,本文編號(hào):1468850
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1468850.html