礦用提升機(jī)盤式制動(dòng)器正壓力分析及其檢測(cè)方法
本文關(guān)鍵詞:礦用提升機(jī)盤式制動(dòng)器正壓力分析及其檢測(cè)方法 出處:《太原理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 盤式制動(dòng)器 制動(dòng)系統(tǒng) 剛?cè)狁詈?/b> 正壓力檢測(cè)
【摘要】:提升機(jī)是煤礦生產(chǎn)運(yùn)輸中的關(guān)鍵設(shè)備,提升機(jī)的良好運(yùn)行對(duì)確保煤礦安全生產(chǎn)、生產(chǎn)效率以及可靠性等意義重大。在提升機(jī)制動(dòng)過(guò)程中,如果盤式制動(dòng)器產(chǎn)生的制動(dòng)力不足,制動(dòng)力矩小于3倍最大靜力矩,就會(huì)引發(fā)嚴(yán)重的事故。一旦發(fā)生事故將造成無(wú)法估計(jì)的經(jīng)濟(jì)損失,甚至造成人員傷亡事故,對(duì)礦工家庭乃至國(guó)家和社會(huì)帶來(lái)嚴(yán)重影響,后果不堪設(shè)想。礦井提升機(jī)恒減速制動(dòng)是處理提升過(guò)程中緊急安全事故的最佳方式,而盤式制動(dòng)器的制動(dòng)正壓力是決定制動(dòng)減速度的關(guān)鍵因素之一,因此對(duì)盤式制動(dòng)器在恒減速工況下的制動(dòng)正壓力分析及其檢測(cè)方法的研究很有必要。本文基于多體系統(tǒng)剛?cè)狁詈蟿?dòng)力學(xué)建模方法,對(duì)含有剛體和柔性體的盤式制動(dòng)器進(jìn)行了建模理論研究,并利用ANSYS軟件對(duì)其進(jìn)行了仿真分析。本文的具體研究工作和成果主要有:第一,介紹研究盤式制動(dòng)器動(dòng)態(tài)特性的目的及意義,著重介紹了盤式制動(dòng)器的構(gòu)成、工作原理、發(fā)展情況以及關(guān)于盤式制動(dòng)器國(guó)內(nèi)外學(xué)者的研究現(xiàn)狀,最后提出了論文的主要研究?jī)?nèi)容。第二,對(duì)剛?cè)狁詈舷到y(tǒng)動(dòng)力學(xué)理論基礎(chǔ)進(jìn)行了分析,其中對(duì)模態(tài)綜合法、柔性體內(nèi)應(yīng)力求解方法以及截面內(nèi)應(yīng)力的有限元求解法幾個(gè)方面的內(nèi)容進(jìn)行了重點(diǎn)介紹;簡(jiǎn)要的介紹了ANSYS Workbench軟件平臺(tái),利用圖表清晰地說(shuō)明了軟件平臺(tái)進(jìn)行數(shù)值模擬分析的流程。第三,根據(jù)提升機(jī)恒減速制動(dòng)液壓系統(tǒng)的工作原理,在SimulationX軟件中對(duì)采用全數(shù)字PID控制的恒減速制動(dòng)液壓系統(tǒng)進(jìn)行了仿真分析。研究結(jié)果得出恒減速制動(dòng)過(guò)程中減速度的變化情況與制動(dòng)正壓力密切相關(guān),而且獲得了實(shí)際工作情況下油壓力的變化情況,為分析提升機(jī)恒減速制動(dòng)過(guò)程中正壓力的分布情況奠定基礎(chǔ)。第四,根據(jù)實(shí)際盤式制動(dòng)器結(jié)構(gòu)設(shè)計(jì)圖,運(yùn)用UG軟件建立盤式制動(dòng)器的三維模型,模型簡(jiǎn)化后導(dǎo)入有限元軟件Ansys中,對(duì)其進(jìn)行了剛?cè)狁詈纤矐B(tài)動(dòng)力學(xué)仿真分析,獲得盤式制動(dòng)器中柔性部件的動(dòng)應(yīng)力分布云圖及應(yīng)力曲線。最后對(duì)各柔性部件的受力進(jìn)行分析比較,確定能夠表征正壓力的部件,為后續(xù)正壓力檢測(cè)方法的設(shè)計(jì)提供基礎(chǔ)。第五,依據(jù)剛?cè)狁詈纤矐B(tài)動(dòng)力學(xué)仿真分析得到的結(jié)果,設(shè)計(jì)了一種實(shí)時(shí)檢測(cè)盤式制動(dòng)器正壓力的方法。闡述了應(yīng)變式力傳感器設(shè)計(jì)中存在的問(wèn)題,通過(guò)有限元分析確定了布置應(yīng)變片的位置和方位,設(shè)計(jì)了對(duì)應(yīng)的橋路連接方式,最后對(duì)本檢測(cè)方法優(yōu)勢(shì)進(jìn)行了說(shuō)明。最后,對(duì)全文的主要研究工作以及成果進(jìn)行了總結(jié),指出今后工作需要完善和提高的地方,對(duì)下一步工作進(jìn)行展望。
[Abstract]:Hoist is the key equipment in coal mine production and transportation. The good operation of hoist is of great significance to ensure the safety, production efficiency and reliability of coal mine. If the brake force is insufficient and the brake torque is less than three times the maximum static moment, the disc brake will cause serious accidents. Once an accident occurs, it will cause incalculable economic losses, and even cause casualties. The mine hoist constant deceleration braking is the best way to deal with the emergency safety accident in the process of lifting. The positive braking pressure of disc brake is one of the key factors of braking deceleration. Therefore, it is necessary to study the positive pressure analysis of disc brake under constant deceleration condition and its detection method. This paper is based on the rigid-flexible coupling dynamic modeling method of multi-body system. The modeling theory of disc brake with rigid body and flexible body is studied, and the simulation analysis is carried out by using ANSYS software. The specific research work and achievements are as follows: first. The purpose and significance of studying the dynamic characteristics of disc brake are introduced. The composition, working principle, development and research status of disc brake at home and abroad are emphatically introduced. Finally, the main research contents of the thesis are put forward. Secondly, the theoretical basis of rigid-flexible coupling system dynamics is analyzed, in which the modal synthesis method is analyzed. The method of solving the stress in flexible body and the finite element method of the stress in the section are introduced in detail. The software platform of ANSYS Workbench is introduced briefly, and the flow of numerical simulation and analysis of the software platform is explained clearly by using the chart. According to the hoist constant deceleration brake hydraulic system working principle. The hydraulic system of constant deceleration brake controlled by digital PID is simulated and analyzed in SimulationX software. The research results show that the change of deceleration speed and braking positive during the process of constant deceleration braking are obtained. Stress is closely related. Moreover, the variation of oil pressure under actual working conditions is obtained, which lays a foundation for analyzing the distribution of positive pressure in the process of constant deceleration braking of hoist. 4th, according to the structural design diagram of actual disc brake. The three-dimensional model of disc brake was established by UG software. The model was simplified and imported into the finite element software Ansys. The transient dynamic simulation of rigid and flexible coupling was carried out. The dynamic stress distribution cloud diagram and stress curve of flexible parts in disc brake are obtained. Finally, the force of each flexible component is analyzed and compared to determine the components that can represent the positive pressure. It provides the foundation for the design of the following positive pressure detection method. 5th, according to the results of the rigid-flexible coupling transient dynamic simulation analysis. A method of real-time detecting positive pressure of disc brake is designed. The problems existing in the design of strain force sensor are expounded. The position and orientation of the strain gauge are determined by finite element analysis. At last, the advantages of this testing method are explained. Finally, the main research work and results are summarized, and the work needs to be improved and improved in the future. The future work is prospected.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD534
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 薛鵬;;礦井提升機(jī)盤式制動(dòng)器可靠性分析[J];山東煤炭科技;2016年12期
2 黃康;夏公川;張祖芳;張坤;;基于多柔體動(dòng)力學(xué)的汽車零部件疲勞壽命研究[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年12期
3 張春;黃華軍;金鑫;于志強(qiáng);;剛?cè)狁詈系臏u旋壓縮機(jī)轉(zhuǎn)子系統(tǒng)的動(dòng)力學(xué)分析[J];流體機(jī)械;2016年08期
4 陳競(jìng);;一種提升機(jī)盤形閘制動(dòng)力監(jiān)測(cè)傳感器設(shè)計(jì)[J];工業(yè)控制計(jì)算機(jī);2015年07期
5 孫東陽(yáng);陳國(guó)平;;剛?cè)狁詈隙囿w系統(tǒng)動(dòng)力學(xué)模型降階[J];振動(dòng)工程學(xué)報(bào);2014年05期
6 賈玉景;代穎軍;;礦井提升機(jī)盤式制動(dòng)器設(shè)計(jì)[J];機(jī)床與液壓;2014年10期
7 李生軍;;礦井提升機(jī)液壓制動(dòng)系統(tǒng)可靠性分析與探討[J];中國(guó)礦山工程;2013年04期
8 郝勝峰;;礦井提升機(jī)盤式制動(dòng)器的可靠性[J];硅谷;2012年09期
9 樊兆峰;;提升機(jī)盤形閘擺動(dòng)分析及其檢測(cè)技術(shù)[J];礦山機(jī)械;2011年11期
10 張青霞;段忠東;Lukasz Jankowski;王豐;;基于形函數(shù)方法快速識(shí)別結(jié)構(gòu)動(dòng)態(tài)荷載的試驗(yàn)驗(yàn)證[J];振動(dòng)與沖擊;2011年09期
相關(guān)碩士學(xué)位論文 前6條
1 麻慧君;礦用提升機(jī)全數(shù)字軟硬件冗余恒減速制動(dòng)系統(tǒng)研究[D];太原理工大學(xué);2013年
2 馮敏;礦井提升機(jī)盤式制動(dòng)器失效原因分析及解決方案研究[D];中南大學(xué);2012年
3 魏立梅;液壓盤式制動(dòng)監(jiān)測(cè)裝置的研究[D];山東科技大學(xué);2011年
4 周俊波;基于變異系數(shù)的盤式制動(dòng)器結(jié)構(gòu)優(yōu)化設(shè)計(jì)[D];武漢理工大學(xué);2009年
5 李明軍;半主動(dòng)懸架控制與性能檢測(cè)系統(tǒng)的研究[D];山東科技大學(xué);2007年
6 胡正權(quán);回轉(zhuǎn)制動(dòng)載荷激勵(lì)下的門座起重機(jī)臂架系統(tǒng)動(dòng)態(tài)特性研究[D];武漢理工大學(xué);2006年
,本文編號(hào):1415880
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1415880.html