氯化鋁低溫氯化法五氧化二釩提純工藝研究
本文關(guān)鍵詞:氯化鋁低溫氯化法五氧化二釩提純工藝研究 出處:《中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院過(guò)程工程研究所)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 無(wú)水氯化鋁 低溫氯化 氨解 提純 高純五氧化二釩
【摘要】:隨著科技的不斷進(jìn)步,全釩液流電池、釩鋁合金、鋰電池以及催化劑等眾多領(lǐng)域?qū)Ω呒兌任逖趸C產(chǎn)品的需求量越來(lái)越大。高純五氧化二釩的傳統(tǒng)制備工藝大都停留在實(shí)驗(yàn)室研究階段,面臨著成本高、流程長(zhǎng)、污染重、產(chǎn)品純度低等問(wèn)題,高純五氧化二釩產(chǎn)品的低成本短流程清潔制備技術(shù)已成為釩化工行業(yè)的研究熱點(diǎn)。本論文提出了一種通過(guò)無(wú)水氯化鋁低溫氯化分離工業(yè)級(jí)五氧化二釩產(chǎn)品中鐵、鋁、硅等雜質(zhì)進(jìn)而提純并制備高純五氧化二釩的新方法。首先,通過(guò)理論分析和探索實(shí)驗(yàn)確定了原則工藝流程;然后,系統(tǒng)研究了氯化反應(yīng)的工藝條件和反應(yīng)機(jī)理,以及氯化反應(yīng)所得三氯氧釩中間體氨解過(guò)程中各因素對(duì)沉釩率和產(chǎn)品純度的影響規(guī)律,并制備得到了五氧化二釩高純產(chǎn)品;最后,進(jìn)一步拓展了原料范圍,選用三種不同的含釩原料對(duì)整體流程進(jìn)行了驗(yàn)證。本論文在以下幾方面取得了創(chuàng)新結(jié)果:(1)在熱力學(xué)計(jì)算、物性分析及探索實(shí)驗(yàn)的基礎(chǔ)上,確定了無(wú)水氯化鋁低溫氯化法制備高純五氧化二釩新工藝的整體流程。研究結(jié)果表明,無(wú)水氯化鋁與五氧化二釩之間的氯化反應(yīng)在低溫下可行,且結(jié)合各雜質(zhì)氯化物的物化性質(zhì)分析,確定此氯化反應(yīng)對(duì)實(shí)現(xiàn)原料中釩與其他雜質(zhì)的分離具備有利作用。反應(yīng)溫度為160℃C時(shí),氯化反應(yīng)發(fā)生并生成三氯氧釩中間體,中間體經(jīng)過(guò)氨解煅燒過(guò)程制備出高純V205。(2)系統(tǒng)研究了反應(yīng)溫度、原料配比、添加劑用量等因素對(duì)氯化反應(yīng)的影響規(guī)律,確定了較適宜的氯化反應(yīng)工藝條件,并借助TG-DSC、SEM、EDS等手段分析了氯化反應(yīng)的機(jī)理。在反應(yīng)溫度為170℃、無(wú)水氯化鋁與原料中五氧化二釩的化學(xué)計(jì)量比為3:1、氯化鈉添加量x=nAlCl3/(nAlCl3+mNaCl)=0.6,且添加氯化鈉后,反應(yīng)時(shí)間可縮短到1h,三氯氧釩產(chǎn)品收率最高可達(dá)83.35%,反應(yīng)產(chǎn)物純度≥99.95%。氯化反應(yīng)過(guò)程中有中間體AlOCl生成,最終A1C13全部轉(zhuǎn)化成A1203。(3)研究了氨解過(guò)程各工藝參數(shù)對(duì)五氧化二釩產(chǎn)品純度和沉釩率的影響規(guī)律,確定了較適宜的氨解工藝參數(shù)。在釩濃度介于13.4~68.8g/L之間、氨解溫度為35℃C、加氨系數(shù)為0.8~1.0、攪拌強(qiáng)度為15 r/s時(shí),氨解反應(yīng)過(guò)程釩收率最高。'借助ICP、XRD、XRF、XPS等手段,對(duì)五氧化二釩產(chǎn)品的純度及表面元素化學(xué)計(jì)量比進(jìn)行了詳細(xì)的分析,確定制備的五氧化二釩產(chǎn)品純度≥99.97%。(4)分別以釩渣鈉化提釩工藝生產(chǎn)的工業(yè)級(jí)五氧化二釩(96.487%)、石煤提釩工藝生產(chǎn)的工業(yè)五氧化二釩(96.675%)以及釩渣(25.46%V205)為原料,采用低溫氯化法工藝,制得了純度分別為≥99.84%、≥99.97%、≥99.70%的五氧化二釩產(chǎn)品,為含釩原料氯化提釩的研究提供了新思路。
[Abstract]:With the continuous progress of science and technology, VRB, vanadium Aluminum Alloy, many areas of the lithium battery and the catalyst great demands for high purity five of two vanadium products. The traditional preparation of high purity five of two vanadium production process mostly stay in the laboratory stage, facing a high cost, long process, heavy pollution problems, low product purity, low cost clean short process for preparing high purity five of two vanadium vanadium products has become a research hotspot in the chemical industry. This paper presents a kind of low temperature chloride anhydrous aluminum chloride by separation of industrial grade five of two vanadium products of iron, aluminum, silicon and other impurities and purification method preparation of high purity and five of two vanadium. Firstly, through theoretical analysis and exploration of experiment to determine the principle process; then, process conditions of chlorination reaction system and reaction mechanism, and the reaction to three vanadium oxychloride Between the ammonolysis of factors in influence of precipitation rate and product purity, and prepared five of two vanadium high purity products; finally, to further expand the range of raw materials, selected three kinds of whole process was proved vanadium containing raw materials. This paper has made the innovation results in the following aspects: (1) in the thermodynamic calculation, physical analysis and exploration based on the experiment, the whole process of new technology of low temperature aluminum chloride anhydrous chloride prepared by high purity five of two vanadium. The results show that the reaction between chloride and anhydrous aluminium chloride and five of two vanadium at low temperature and is feasible. Combined with the analysis of physicochemical properties of the impurities of chloride, the reaction of chloride determination of separation of vanadium in raw material and other impurities have beneficial effects. The reaction temperature is 160 DEG C, chloride reaction and generate three vanadium oxychloride intermediates, intermediates by aminolysis of calcined Burning process of preparing high pure V205. (2) system of reaction temperature, raw material ratio, effect of additive dosage on the chlorination reaction, the chlorination of determining suitable process conditions, and with the help of TG-DSC, SEM, EDS and other means of analysis of the mechanism of chlorination reaction. The reaction temperature is 170 DEG C, the stoichiometry of anhydrous aluminum chloride and raw materials in five of two vanadium ratio was 3:1, the adding amount of sodium chloride x=nAlCl3/ (nAlCl3+mNaCl) =0.6, and after the addition of sodium chloride, the reaction time can be shortened to 1H, three vanadium oxychloride products yield up to 83.35%, with intermediate product purity AlOCl generation reaction over 99.95%. chlorination reaction process finally, A1C13 into A1203. (3) studied the aminolysis process parameters on the five of two vanadium product purity and precipitation rate were investigated, to determine the optimum solution of ammonia process parameters. In vanadium concentration from 13.4 to 68.8g/L, Ammonia solution temperature of 35 DEG C, ammonia coefficient is 0.8 ~ 1, the stirring intensity is 15 r/s, ammonolysis process of vanadium yield. With the help of ICP, XRD, XRF, XPS and other means of purity and surface elements of stoichiometric five of two vanadium products than the detailed analysis, to determine the five oxidation the preparation of two vanadium product purity not less than 99.97%. (4) respectively in vanadium slag sodium extraction industrial grade five vanadium oxide production of two vanadium (96.487%), stone coal extraction industry five vanadium oxide production process of vanadium and vanadium slag is two (96.675%) (25.46%V205) as raw materials by low temperature chlorination process, prepared the purity was more than 99.84%, more than 99.97%, five more than 99.70% of two vanadium oxidation products, provides a new idea for raw materials containing vanadium vanadium chloride is studied.
【學(xué)位授予單位】:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院過(guò)程工程研究所)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TQ135.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張貴剛;陳孝娥;崔旭梅;劉甜甜;藍(lán)德均;;高純度五氧化二釩制備技術(shù)研究進(jìn)展[J];現(xiàn)代化工;2016年09期
2 朱軍;朱明明;趙奇;白苗苗;李凡;程國(guó)鵬;;高純五氧化二釩制備及應(yīng)用[J];中國(guó)有色冶金;2016年03期
3 王遠(yuǎn)望;羅海波;彭榮華;;釩電池用VOSO_4綠色制備工藝研究[J];鋼鐵釩鈦;2016年03期
4 殷兆遷;李千文;彭一村;吳劉柱;潘少?gòu)?;偏釩酸鈉制取技術(shù)研究[J];鋼鐵釩鈦;2015年02期
5 王遠(yuǎn)望;官清;;高純V_2O_5制備釩電池用VOSO_4的工藝研究[J];廣東化工;2014年23期
6 殷兆遷;孫朝暉;李大標(biāo);侯海軍;;釩鋁合金用五氧化二釩制取技術(shù)研究[J];鋼鐵釩鈦;2014年06期
7 曾瑞;郝永利;;廢棄SCR催化劑回收利用項(xiàng)目建設(shè)格局的分析[J];中國(guó)環(huán)保產(chǎn)業(yè);2014年09期
8 成勇;敬守斌;;電感耦合等離子體原子發(fā)射光譜法測(cè)定釩鋁合金中15種雜質(zhì)元素[J];理化檢驗(yàn)(化學(xué)分冊(cè));2013年01期
9 王英;;沉釩廢水處理技術(shù)的研究現(xiàn)狀[J];鐵合金;2012年06期
10 陳自清;;提高酸性銨鹽沉釩質(zhì)量的探討[J];鋼鐵釩鈦;2012年03期
相關(guān)碩士學(xué)位論文 前7條
1 霍耀輝;三維多孔五氧化二釩超級(jí)電容器的研究[D];吉林大學(xué);2015年
2 李進(jìn);微波輔助自蔓延合成釩鋁合金的研究[D];重慶大學(xué);2012年
3 黃慧敏;石煤中釩的酸法浸出與釩(Ⅳ)的分離[D];中南大學(xué);2012年
4 董建宏;富釩資源選擇性氯化提釩技術(shù)的相關(guān)研究[D];東北大學(xué);2011年
5 李魚(yú)飛;V-4Cr-4Ti合金的制備及組織結(jié)構(gòu)研究[D];中國(guó)工程物理研究院;2008年
6 張雪峰;五氧化二釩薄膜的制備及其電致變色性能研究[D];電子科技大學(xué);2007年
7 張曉琳;釩酸釔晶體的原料合成、晶體生長(zhǎng)及性能測(cè)試[D];長(zhǎng)春理工大學(xué);2002年
,本文編號(hào):1412379
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1412379.html