高性能碳素材料雜化炭膜的制備及基礎(chǔ)應(yīng)用研究
發(fā)布時間:2018-01-07 10:27
本文關(guān)鍵詞:高性能碳素材料雜化炭膜的制備及基礎(chǔ)應(yīng)用研究 出處:《沈陽工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 雜化炭膜 磁場 氣體分離性 炭膜反應(yīng)器
【摘要】:膜技術(shù)是近半個世紀(jì)發(fā)展起來的一種分離技術(shù),具有分離效率高、操作簡單、能耗低等優(yōu)點,得到了廣泛的應(yīng)用。然而,市場上傳統(tǒng)的有機膜熱穩(wěn)定性、化學(xué)穩(wěn)定性和分離性較差,迫切需要開發(fā)新型高性能膜材料。炭膜是一種新型無機膜材料,近幾十年得到廣泛關(guān)注,它既可以克服有機膜的缺點,又具有良好的分離性能。然而,炭膜存在的造價高、質(zhì)地脆等問題,嚴(yán)重制約了大規(guī)模工業(yè)化應(yīng)用。鑒于此,本文制備了具有較高強度的支撐炭膜,同時通過摻雜碳素材料優(yōu)化微觀結(jié)構(gòu)與分離性能;另外,研究了其在強化甲醇制氫反應(yīng)的應(yīng)用。首先,以BTDA-ODA型聚酰亞胺為前驅(qū)體材料,以石墨烯、碳納米管和活性炭纖維等多種碳素材料為摻雜劑,制備了非支撐雜化炭膜;采用TGA、FTIR、XRD、SEM等先進手段分析了前驅(qū)體在熱解過程中的熱解行為、表面元素或官能團變化,及所得炭膜微觀形貌和結(jié)構(gòu)的演變。通過磁場優(yōu)化炭膜的微觀結(jié)構(gòu)和制備工藝過程。再以高機械強度的多孔炭板為支撐體,通過旋涂成膜法,經(jīng)干燥成膜及炭化等步驟制備得到支撐炭膜?疾炝酥误w成型壓力、摻雜劑用量、滲透溫度、滲透壓力等條件對支撐炭膜微結(jié)構(gòu)及氣體分離性的影響。最后,將所制備支撐炭膜用于強化甲醇重整制氫反應(yīng)過程,研究了反應(yīng)溫度、反應(yīng)時間、催化劑載體、炭膜分離性等因素對反應(yīng)轉(zhuǎn)化率和收率的影響。結(jié)果表明:(1)在成膜過程中,外加磁場有利于提高最終所制備炭膜的氣體滲透性。當(dāng)磁場強度為10Gs時,炭膜的滲透性分別為546Barrer(H2)、349Barrer(CO2)、148Barrer(O2)、24Barrer(N2);同時,選擇性分別為22.5(H2/N2)、6.1(O2/N2)、14.4(CO2/N2)。(2)非支撐碳素材料雜化炭膜的氣體分離性能大多分布于Robeson圖上限,極具有商業(yè)價值。(3)石墨烯與母體兼容性良好,可大幅度提升炭膜的氣體滲透性。當(dāng)石墨烯質(zhì)量分?jǐn)?shù)為0.3%時,支撐炭膜對H2、CO2、O2、N2的滲透性分別達5229Barrer、1315Barrer、1123Barrer、529Barrer,對H2/N2、CO2/N2和O2/N2選擇性分別為9.9、2.5和2.4。(4)在甲醇水蒸氣重整制氫反應(yīng)中,固定床反應(yīng)器的最佳反應(yīng)溫度為260oC時,甲醇轉(zhuǎn)化率為71.33%,H2收率為21.39%;炭膜反應(yīng)器的最佳反應(yīng)溫度為280oC時,甲醇轉(zhuǎn)化率與H2收率分別為93.29%和29.15%。
[Abstract]:Membrane technology is a separation technology developed for nearly half a century, has a high separation efficiency, simple operation, low energy consumption, has been widely used. However, the traditional market of organic film thermal stability, chemical stability and separation is poor, it is urgent to develop a new high performance membrane material is a new type of carbon membrane. Inorganic membrane materials, has received extensive attention in recent decades, it can overcome the shortcomings of the organic film, and has a good separation performance. However, the high cost of carbon membrane, crisp texture and other issues, has seriously restricted the application of large-scale industrialization. In view of this, supported carbon membranes with high strength were prepared at the same time by doping carbon materials to optimize the micro structure and separation performance; in addition, the research on its application in the enhancement of hydrogen production by methanol reaction. Firstly, the BTDA-ODA type polyimide precursor materials, graphene, carbon nanotubes The activated carbon fiber and other carbon materials as doping agent, non supported hybrid carbon membranes were prepared using TGA, FTIR; XRD, SEM and other advanced means the pyrolysis behavior of the precursor in the pyrolysis process were analyzed, the surface elements or functional groups, and the evolution of the morphology and structure of carbon membrane. Through magnetic field optimization carbon membrane microstructure and preparation process. Using porous carbon plate with high mechanical strength as support, by spin coating method, drying and carbonization of film prepared by supported carbon membranes was studied. The supporting body molding pressure, amount of dopant, infiltration temperature, pressure and other conditions penetration of the supported carbon membranes microstructure and gas separation. Finally, the system used to strengthen the methanol reforming process to prepare supported carbon membranes, the reaction temperature of reaction time, catalyst carrier, carbon membrane separation and other factors on the reaction conversion rate and yield 鐨勫獎鍝,
本文編號:1392170
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1392170.html
最近更新
教材專著