基于宏孔導電網(wǎng)絡(luò)三維電極電催化析氫性能研究
發(fā)布時間:2018-01-07 01:16
本文關(guān)鍵詞:基于宏孔導電網(wǎng)絡(luò)三維電極電催化析氫性能研究 出處:《華東師范大學》2017年碩士論文 論文類型:學位論文
更多相關(guān)文章: 宏孔導電網(wǎng)絡(luò) 水熱滲碳法 石墨烯 電解水析氫
【摘要】:氫氣作為一種可再生的清潔能源引起了人們的廣泛關(guān)注。電解水制氫不會造成環(huán)境污染,也不消耗不可再生能源,是未來最具潛力且環(huán)境友好的制氫方法。本文主要利用宏孔導電網(wǎng)絡(luò)來構(gòu)建三維陣列電極,研究其應(yīng)用于電解水析氫的可行性。本論文主要做了如下工作:通過標準的微機電(MEMS)加工技術(shù)制成了硅微通道板(SiMCP)結(jié)構(gòu),利用其大比表面積的特點來制備三維陣列電極,研究了一系列三維陣列電極在不同電解質(zhì)中的電化學性能。首先,經(jīng)過真空無電鍍鎳形成宏孔導電網(wǎng)絡(luò)(MECN),而后通過水熱滲碳工藝在電極表面形成碳化鎳層(NiC-MCP),最后在Ar氣氛中高溫退火,在鎳顆粒表面形成納米石墨烯層(NG-MCP)。微結(jié)構(gòu)表征和電化學測試表明,金屬鎳層可以改善硅微通道板導電性,提升硅材料在堿溶液中的穩(wěn)定性。通過滲碳工藝獲得的致密碳化鎳層,可以有效保護金屬鎳層不被電解液腐蝕,但是過量的碳滲入使得鎳層過分膨脹反而降低其穩(wěn)定性。表面納米石墨烯的形成可以有效提高表面缺陷濃度,降低宏孔導電網(wǎng)絡(luò)的溶液接觸電阻,促進快速的離子吸附/脫附反應(yīng)過程。這些優(yōu)異性質(zhì)使得納米石墨烯覆蓋的宏孔導電網(wǎng)絡(luò)能用于各種能源裝置,如超級電容器,鋰離子電池等,也可嘗試將其應(yīng)用于電解水析氫裝置。通過電鍍鈀工藝對宏孔導電網(wǎng)絡(luò)三維電極進行修飾,研究了 Pd/MECN,Pd/NiC-MCP和Pd/NG-MCP作為電極在堿性電解液中的析氫性能。電流密度10mAcm-2下,三種樣品的過電位分別為96,48和47mV,而對應(yīng)的塔菲爾斜率分別為185,121和112mV dec-1。在大電流密度下,Pd/NG-MCP的過電位明顯小于Pd/NiC-MCP。電化學測試分析中發(fā)現(xiàn),利用石墨烯高的電導率和結(jié)構(gòu)穩(wěn)定性的特點,通過引入納米石墨烯層,Pd/NG-MCP三維電極具有最小的溶液界面電阻和電荷轉(zhuǎn)移電阻,導電性能好,電極結(jié)構(gòu)穩(wěn)定,且反應(yīng)速率快。
[Abstract]:Hydrogen as a clean and renewable energy has attracted widespread attention. Water electrolysis will not cause environmental pollution, but also do not consume non renewable energy, is the most promising future methods for hydrogen production and environmental friendly. The main conductive network to build three-dimensional array electrode using macro pore, study its application feasibility in alkaline water electrolysis hydrogen. The main works of this thesis are as follows: by the MEMS standard (MEMS) processing technology made of silicon microchannel plate (SiMCP) structure, with its large surface area characteristics to prepare three-dimensional electrode array, a series of three-dimensional array electrode in different electrolytes in electrochemical performance. First, after vacuum forming electroless nickel macro pore conductive network (MECN), and then through the hydrothermal carbonization process on the surface of the electrode to form nickel carbide layer (NiC-MCP), finally in Ar atmosphere high temperature annealing, formed on the surface of nickel particles Nano graphene layer (NG-MCP). The micro structure characterization and electrochemical measurements show that the nickel layer can improve the conductivity of the silicon micro channel plate, enhance the stability of silicon in alkaline solution. Through carburizing carbide dense nickel layer, can effectively protect the nickel layer by electrolyte corrosion, but excessive the nickel layer carbon into excessive expansion will reduce its stability. The formation of surface nano graphene can effectively improve the surface defect concentration, reduce the contact resistance of macro pore solution of conductive network, promote the fast ion adsorption / desorption reaction process. These excellent properties make graphene nano covering macro pore conductive network can be used for a variety of energy device, such as super capacitor, lithium ion battery, can also be applied to water electrolysis hydrogen device. Through palladium plating on macro pore conductive network three dimensional electrode modification technology, study P D/MECN, Pd/NiC-MCP and Pd/NG-MCP as the electrode for hydrogen evolution performance in alkaline electrolyte. The current density of 10mAcm-2, the overpotential of three samples were 96,48 and 47mV, and the corresponding Tafel slope are respectively 185121 and 112mV dec-1. at high current density, the over potential is significantly less than that of Pd/NiC-MCP. electrochemical studies of Pd/NG-MCP. The characteristics of the conductivity and structure stability of graphene is high, through the introduction of nano graphene layer, Pd/NG-MCP three-dimensional electrode solution interface has the least resistance and charge transfer resistance, good electrical conductivity, stable electrode structure, and the reaction rate is faster.
【學位授予單位】:華東師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ116.2;O646.5
【參考文獻】
相關(guān)期刊論文 前1條
1 杜晶晶;李娜;許建雄;許利劍;;電解水析氫電極材料的研究新進展[J];功能材料;2015年09期
,本文編號:1390353
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1390353.html
最近更新
教材專著