基于電正性復合材料聚苯胺-氧化石墨烯的摩擦納米發(fā)電機研究
發(fā)布時間:2024-02-04 03:35
如今,摩擦電納米發(fā)電機(TENG)已成為最受歡迎的能量收集技術之一,該技術將廢棄的機械能轉化為電能以進行再利用。為了制造更高效率的更好的能量轉換,已經做出了巨大的努力來制造不同的TENG裝置,但是現(xiàn)有的低性能的摩擦材料限制了 TENG的應用。因此,迫切需要開發(fā)低成本,環(huán)境友好,合成工藝簡單,高效的新型摩擦材料。為此本課題將摩擦學正性材料(聚苯胺(PANI))與摩擦學負性材料(氧化石墨烯(GO))相結合形成一種新型的摩擦學正性材料用于TENG。在外力作用下,PANI和GO的結合引入了一種新的機制,為材料內部的電子流動創(chuàng)造了一個通道。這一機制有助于將一些額外的電子從摩擦正極材料的非接觸區(qū)轉移到摩擦負性層,從而增加表面電荷密度結果,使TENG裝置的電氣性能得以提高。本文通過將700μL PANI和4 mg/ml GO結合形成的摩擦學正性材料與聚二甲基硅氧烷(PDMS)組合為三層結構,制得尺寸為1 ×2 cm2的TENG器件。這種TENG器件在50N的外力和5Hz的頻率下,有可能產生314.92 V的開路電壓和37.81 mA/m2的電流密度,峰值功率密度為10.43 W/m2。所獲得的功率能...
【文章頁數(shù)】:89 頁
【學位級別】:碩士
【文章目錄】:
Abstract
摘要
Glossary of Abbreviations
Chapter 01 Introduction
1.1 Motivation
1.2 Mechanical Energy Harvesting Technology
1.2.1 Pyroelectric Nanogenerator (PyNG)
1.2.2 Piezoelectric Nanogenerator (PENG)
1.2.3 Triboelectric Nanogenerator (TENG)
1.3 Basic Components of TENG
1.3.1 Tribopositive Materials
1.3.2 Tribonegative Materials
1.4 Basic Working Principle of TENG
1.4.1 Triboelectric Effect
1.4.2 Electrostatic Induction
1.5 Fundamental Working Modes of TENG
1.5.1 Vertical Contact-Separation Mode
1.5.2 Lateral Sliding Mode
1.5.3 Single Electrode Mode
1.5.4 Freestanding Triboelectric Layer Mode
1.6 Recent Progress of TENG
1.6.1 Roadmap of Tribomaterials
1.6.2 Self-Powered Sensors
1.6.3 Harvesting Energy from Environment
Chapter 02 Synthesis of Materials and Device Fabrication
2.1 Materials Required
2.1.1 Preparation of Graphene Oxide (GO)
2.1.2 Preparation of Acryl Amide and Lauryl Acrylate Based Porous Polymer
2.1.3 Preparation of Polyaniline (PANI) Based Film
2.1.4 Preparation of GO and PANI Induced Polymer Film
2.1.5 Synthesis of PDMS Layer
2.2 TENG Device Fabrication
2.3 Measurement and Characterization
Chapter 03 Experimental Analysis of TENG Device
3.1 TENG Device Description
3.2 Material Surface Morphology
3.3 Interaction Between PANI and GO
3.4 Electrical Performance of Fabricated TENG Devices
3.4.1 Performance of Pure Porous Polymer Film
3.4.2 Effect of PANI
3.4.3 Effect of GO in the Presence of PANI
3.4.4 Power Density
3.5 Effect of Externally Applied Parameters
3.5.1 External Force
3.5.2 Spacer Distance
3.6 Mechanical and Thermal Stability
3.7 Electrical Performance with Different Tribonegtaive Materials
3.8 Working Mechanism
3.8.1 Working Mechanism of Porous Film for Contact-Separation Mode
3.8.2 Electron Pathway Based Working Mechanism
3.8.3 Verification of Working Mechanism
3.9 Validation of High Performance of Device
3.9.1 Kelvin Probe Force Microscopy (KPFM)
3.9.2 Fourier Transformed Infrared Ray (FTIR)
3.9.3 Raman Spectroscopy
3.10 Comparative Analysis
3.11 Applications of Fabricated TENG Device
3.11.1 LEDs Blinking
3.11.2 Charging of Capacitors
Chapter 04 Conclusion and Future Work
4.1 Conclusion
4.2 Future Work
List of References
Acknowledgements
Paper List
本文編號:3895139
【文章頁數(shù)】:89 頁
【學位級別】:碩士
【文章目錄】:
Abstract
摘要
Glossary of Abbreviations
Chapter 01 Introduction
1.1 Motivation
1.2 Mechanical Energy Harvesting Technology
1.2.1 Pyroelectric Nanogenerator (PyNG)
1.2.2 Piezoelectric Nanogenerator (PENG)
1.2.3 Triboelectric Nanogenerator (TENG)
1.3 Basic Components of TENG
1.3.1 Tribopositive Materials
1.3.2 Tribonegative Materials
1.4 Basic Working Principle of TENG
1.4.1 Triboelectric Effect
1.4.2 Electrostatic Induction
1.5 Fundamental Working Modes of TENG
1.5.1 Vertical Contact-Separation Mode
1.5.2 Lateral Sliding Mode
1.5.3 Single Electrode Mode
1.5.4 Freestanding Triboelectric Layer Mode
1.6 Recent Progress of TENG
1.6.1 Roadmap of Tribomaterials
1.6.2 Self-Powered Sensors
1.6.3 Harvesting Energy from Environment
Chapter 02 Synthesis of Materials and Device Fabrication
2.1 Materials Required
2.1.1 Preparation of Graphene Oxide (GO)
2.1.2 Preparation of Acryl Amide and Lauryl Acrylate Based Porous Polymer
2.1.3 Preparation of Polyaniline (PANI) Based Film
2.1.4 Preparation of GO and PANI Induced Polymer Film
2.1.5 Synthesis of PDMS Layer
2.2 TENG Device Fabrication
2.3 Measurement and Characterization
Chapter 03 Experimental Analysis of TENG Device
3.1 TENG Device Description
3.2 Material Surface Morphology
3.3 Interaction Between PANI and GO
3.4 Electrical Performance of Fabricated TENG Devices
3.4.1 Performance of Pure Porous Polymer Film
3.4.2 Effect of PANI
3.4.3 Effect of GO in the Presence of PANI
3.4.4 Power Density
3.5 Effect of Externally Applied Parameters
3.5.1 External Force
3.5.2 Spacer Distance
3.6 Mechanical and Thermal Stability
3.7 Electrical Performance with Different Tribonegtaive Materials
3.8 Working Mechanism
3.8.1 Working Mechanism of Porous Film for Contact-Separation Mode
3.8.2 Electron Pathway Based Working Mechanism
3.8.3 Verification of Working Mechanism
3.9 Validation of High Performance of Device
3.9.1 Kelvin Probe Force Microscopy (KPFM)
3.9.2 Fourier Transformed Infrared Ray (FTIR)
3.9.3 Raman Spectroscopy
3.10 Comparative Analysis
3.11 Applications of Fabricated TENG Device
3.11.1 LEDs Blinking
3.11.2 Charging of Capacitors
Chapter 04 Conclusion and Future Work
4.1 Conclusion
4.2 Future Work
List of References
Acknowledgements
Paper List
本文編號:3895139
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/3895139.html