實(shí)驗(yàn)研究銣原子蒸汽中脈沖真空壓縮態(tài)的建立過程
[Abstract]:The emergence of squeezed light science has a great influence on the whole field of physics. The squeezed light field produced by a variety of nonlinear optical processes and its performance optimization are the research hotspots in the field of quantum optics. In the field of quantum information and quantum precision measurement, pulse compressed light has a very wide range of applications. The study of its generation and noise changes provides a preliminary preparation for the subsequent quantum communication experiments with continuous variables. After decades of research, there are many methods to generate pulse squeezed light field, including optical parametric oscillations, photomechanics, interaction between light and atomic ensemble, and so on. The spectral bandwidth of nonlinear optical conversion in crystals is quite wide (about several nanometers), while the bandwidth of light-atom interaction systems such as electromagnetically induced transparency or Raman resonance usually does not exceed the order of MHz. Therefore, the compression sources interacting with these systems need to have excellent noise suppression performance at narrow bandwidth frequency. In addition to the scheme of crystal compression source, the nonlinear optical process in atomic medium can also produce nonlinear light field, such as the non-degenerate four-wave mixing process can produce two-mode squeezed state and entangled light field with nanosecond pulse width. A similar non-degeneracy process can produce orthogonal squeezed vacuum field, which researchers call optical polarization self-rotating compression. All the experiments in this paper are based on this scheme. The optimal noise compression of this method is-3dB. Of course, most of the research on polarization self-rotating compression is the generation of continuous light field. For the generation of pulse squeezed light field, the establishment process of pulse squeezed state, the evolution of noise intensity of signal light field is rarely involved. Based on this background, we focus on the pulse vacuum squeezed state produced by polarization self-rotation utility in thermal rubidium 87 atomic ensemble, and use balanced zero beat detection to collect the orthogonal components of the compression field, based on the previous research. The phase average processing of the orthogonal component is carried out, and the evolution of the noise intensity of the pulse signal light with time is measured. It is observed that the signal light noise has experienced a sharp fluctuation of the interaction time in the order of microseconds from the classical thermal state. Finally, the process of falling back to the vacuum squeezed state.
【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O431.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林仁明;;壓縮真空態(tài)、相干態(tài)和壓縮態(tài)的生成[J];福建師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1987年03期
2 彭X墀;李軍;黃茂全;謝常德;靳少征;李瑞寧;郭光燦;周壽桓;吳令安;;光場壓縮態(tài)產(chǎn)生的實(shí)驗(yàn)研究[J];量子電子學(xué);1988年02期
3 曾愛華,曾浩生,匡樂滿;奇偶?jí)嚎s態(tài)是類虛化態(tài)[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);1998年03期
4 趙玉芳,楊伯君,張曉光;光纖損耗對(duì)孤子壓縮態(tài)的影響[J];量子光學(xué)學(xué)報(bào);2002年S1期
5 范洪義,郭光燦;壓縮算符的新形式與壓縮態(tài)的各種表示和性質(zhì)[J];光學(xué)學(xué)報(bào);1985年09期
6 李希曾,單瑩;光的壓縮態(tài)的幾個(gè)定義及其等價(jià)性[J];量子電子學(xué);1987年02期
7 孫萬鈞;;壓縮態(tài)的放大[J];量子電子學(xué);1988年02期
8 吳令安;沖破量子極限——光壓縮態(tài)[J];現(xiàn)代物理知識(shí);1989年02期
9 林克強(qiáng);;量子壓縮態(tài)及其熵[J];上饒師專學(xué)報(bào)(自然科學(xué)版);1989年02期
10 楊伯君,李榮華,于麗;光纖損耗對(duì)光脈沖壓縮態(tài)的影響[J];量子光學(xué)學(xué)報(bào);2001年04期
相關(guān)會(huì)議論文 前4條
1 趙玉芳;楊伯君;張曉光;;光纖損耗對(duì)孤子壓縮態(tài)的影響[A];第十屆全國量子光學(xué)學(xué)術(shù)報(bào)告會(huì)論文論文集[C];2002年
2 路洪;陳立冰;林潔麗;;糾纏壓縮態(tài)構(gòu)造的貝爾基的測量與量子隱形傳態(tài)(英文)[A];大珩先生九十華誕文集暨中國光學(xué)學(xué)會(huì)2004年學(xué)術(shù)大會(huì)論文集[C];2004年
3 王朝全;於亞飛;張智明;;在混合系統(tǒng)中以磁通比特為媒介產(chǎn)生納米機(jī)械振子的壓縮態(tài)[A];第十五屆全國量子光學(xué)學(xué)術(shù)報(bào)告會(huì)報(bào)告摘要集[C];2012年
4 潘慶;王海;張?jiān)?蘇紅;謝常德;彭墀;;光場壓縮態(tài)的產(chǎn)生和應(yīng)用[A];第八屆全國量子光學(xué)學(xué)術(shù)報(bào)告會(huì)論文摘要選[C];1998年
相關(guān)博士學(xué)位論文 前2條
1 王帥;非高斯壓縮態(tài)及其非經(jīng)典性質(zhì)的研究[D];上海交通大學(xué);2013年
2 張紀(jì)英;動(dòng)力學(xué)退耦合方法在生成簇態(tài)和自旋壓縮態(tài)中的應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前5條
1 李政軍;實(shí)驗(yàn)研究銣原子蒸汽中脈沖真空壓縮態(tài)的建立過程[D];華東師范大學(xué);2017年
2 盧兆山;相位壓縮態(tài)的制備及線性原子干涉儀的研究[D];北京交通大學(xué);2011年
3 吳妙鑫;基于光子回聲技術(shù)的光壓縮態(tài)存儲(chǔ)研究[D];溫州大學(xué);2014年
4 朱興邦;聲子壓縮態(tài)與聲學(xué)聲子壓縮效應(yīng)的研究[D];華中科技大學(xué);2007年
5 王俊鋒;鐵磁體中磁振子的壓縮態(tài)的研究[D];華中科技大學(xué);2006年
,本文編號(hào):2482776
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2482776.html