二維水翼空化初生瞬態(tài)特性研究
[Abstract]:Cavitation is a complex non-constant-flow physical phenomenon in the liquid, which involves many aspects such as multi-phase flow, compressible and phase-to-phase exchange, and has a remarkable influence on the hydraulic machinery, hydraulic engineering, ship engineering, underwater weapon and nuclear industry. In order to predict and evaluate the cavitation performance more accurately, it is necessary to study the characteristics of the transient mechanism at the time of cavitation, and to analyze the transient characteristics at the time of cavitation. In this paper, the thermodynamic parameters in the growth of a single cavitation nucleus in liquid argon and water are studied by using liquid argon and water as the micro-research object. In this paper, the micro-study of the cavitation mechanism is applied to the change of the cavitation transient characteristics of the macro-two-dimensional hydrofoil, and the accuracy of the simulation results of the transient two-dimensional hydrofoil cavitation is verified by means of the experimental research method. The main content is as follows: 1. The relevant data, such as cavitation, bubble nucleation, etc., and the latest research progress at home and abroad are introduced. In this paper, the molecular dynamics (MD) method, the theoretical basic knowledge of the phase change and the gas state equation are introduced, the molecular dynamics (MD) molecular fields, boundary conditions and the solution process of the molecular dynamics (MD) simulation are described. The definition and application type of various ensemble in the calculation process are described, and the selection and application of the molecular dynamics software are introduced in detail. At the same time, the simulation calculation of the third and fourth chapters of this paper is accomplished by using the LAMPS software, and the Lennard-Jones (12-6) force field is used in the simulation calculation. The boundary conditions are periodic boundary conditions. In the NVT ensemble, the NVT-Jones fluid with different initial size cavitation cores was studied to obtain the evolution of the development of the cavitation nuclei under the NVT ensemble, and the molecular potential energy, the system density and the molecular radial distribution function were obtained. The thermodynamic parameters, such as the system pressure and the total energy of the system, are analyzed. The results show that, in the initial stage of cavitation, the flow of the liquid phase molecules into the cavitation nucleus due to the decrease of the local pressure of the fluid promotes the growth of the cavitation nucleus. The results show that the molecular potential energy at the position of the cavitation nucleus is high, and the potential energy of the liquid phase changes greatly in the initial stage of the cavitation nucleus. The potential energy of the liquid phase is relatively stable in the later stage of the growth of the cavitation nucleus. The change of the density of the liquid phase and the density of the interface is obvious, and the density of the cavity of the cavity has little change. The larger the peak intensity of the radial distribution function in the liquid phase region, the narrower the peak width, and the smaller the region molecular space rbin. As the initial size of the cavitation nucleus decreases, the longer the system pressure and total energy reach equilibrium, the smaller the pressure and energy values are balanced. and the variation of the total energy and pressure of the system is large in the early stage of the growth of the cavitation nuclei. The influence of the initial size of the cavitation nucleus and the initial pressure of the system on the cavitation is obtained under the NPT ensemble, and the evolution of the development of the cavitation nucleus, the system pressure and the system energy are obtained. The thermodynamic parameters such as the molecular radial distribution function and so on are analyzed. The results show that when the initial pressure of the system is constant, the critical value of the size of the cavitation core, when the initial size of the cavitation nucleus is less than the critical value, even if the liquid is affected by the negative pressure, Cavitation does not occur due to the forces between the molecules and the hydrogen bond forces that bind the cavitation core to be unable to grow. Cavitation is not only the change of pressure and cavitation core parameters at the micro level, but more importantly, the initial pressure of the system causes the system energy to increase and the structure is unstable, thus causing the change of the cavitation core. when the internal cavitation core is of a certain size, the external pressure is a critical value, and when the external pressure value is larger than the critical value, a corresponding negative pressure is not generated in the calculation domain, or the negative pressure value is small, so that the system is unstable, the cavitation nuclei can not grow under the force of the molecules and the hydrogen bond forces, so that the cavitation does not occur. With the growth of the cavitation nucleus, the total energy and molecular potential energy of the system have a tendency to increase, and the increasing trend affects the stability of the internal structure of the computational domain, which causes the cavitation nuclei to increase rapidly. The Z-G-B cavitation model was optimized by the process of nano-scale cavitation nucleus growth in the fourth chapter and the current study of the micro-scale cavitation nuclear growth process. On the basis of this, the RNG k-turbulent flow model and the optimized cavitation model are used to calculate the cavitation primary process of the two-dimensional hydrofoil. When the cavitation is primary, the pressure field generated by the different attack angles is slightly different, so the possibility of liquid instability around the cavitation nucleus is different, and the probability of the development of the cavitation nuclei on the surface of the hydrofoil is different. The higher the attack angle, the smaller the low-pressure extreme value, and the negative pressure of the surrounding liquid of the cavitation nucleus is gradually increased, so that the potential energy is increased and the cavitation nucleus grows rapidly. The results show that under different pressure fields, the probability of cavitation core growth is different, and the development scale and intensity of the cavitation are different under the influence of different attack angle. In the process of cavitation development, the jet-back jet produced by the tail high pressure has an important influence on the shape and the shedding of the cavity. In the late stage of cavitation formation, the interaction of low pressure and high pressure directly causes the drop-off cavitation and development, thus affecting the flow state distribution of the water flow and the generation of the vortex. The cavitation regeneration is only affected by the low pressure, while the cavitation regeneration is the dual function of the low pressure and the disturbance flow field.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O35
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 潘森森;空化核最新研究評(píng)述[J];力學(xué)進(jìn)展;1985年03期
2 倪漢根,黃建波,徐福生;繞流體初生空化數(shù)的概率估計(jì)[J];水利學(xué)報(bào);1986年10期
3 許衛(wèi)新,程貫一,潘森森;空化起始的理論預(yù)測(cè)——模糊空化系統(tǒng)[J];力學(xué)學(xué)報(bào);1987年06期
4 吳建華;柴恭純;;垂直匯流漩渦空化的聲測(cè)研究[J];水利水運(yùn)科學(xué)研究;1989年03期
5 賀成龍;吳建華;劉文莉;;空化應(yīng)用研究進(jìn)展綜述[J];嘉興學(xué)院學(xué)報(bào);2008年03期
6 潘森森;空化機(jī)理的近代研究[J];力學(xué)進(jìn)展;1979年04期
7 肖天鐸;深水緩坡突體和升臺(tái)的初生空化數(shù)顯解式[J];水利學(xué)報(bào);1985年08期
8 夏維洪,孫景琴,賈春英;減壓模型的初生空化相似律[J];水利學(xué)報(bào);1985年09期
9 楊志明,李煒;關(guān)于消失空化的機(jī)理[J];水動(dòng)力學(xué)研究與進(jìn)展;1987年04期
10 鄭國(guó)華 ,黃熾元;計(jì)入水流阻力的等空化數(shù)曲線(xiàn)計(jì)算[J];石河子農(nóng)學(xué)院學(xué)報(bào);1989年02期
相關(guān)會(huì)議論文 前8條
1 張偉;張瑞平;陳建業(yè);熊煒;張小斌;邱利民;;基于動(dòng)態(tài)空化模型繞數(shù)值研究扭曲三維翼型的非穩(wěn)態(tài)空化過(guò)程[A];第二十五屆全國(guó)水動(dòng)力學(xué)研討會(huì)暨第十二屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議文集(下冊(cè))[C];2013年
2 彭曉星;洪方文;;25~(th)ITTC空化專(zhuān)家委員會(huì)報(bào)告綜述[A];2008年船舶水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨中國(guó)船舶學(xué)術(shù)界進(jìn)入ITTC30周年紀(jì)念會(huì)論文集[C];2008年
3 曹彥濤;彭曉星;徐良浩;;繞三維扭曲水翼云空化演化數(shù)值模擬[A];第十三屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十六屆全國(guó)水動(dòng)力學(xué)研討會(huì)論文集——F船舶與海洋工程流體力學(xué)[C];2014年
4 洪方文;褚學(xué)森;彭曉星;顏開(kāi);劉登成;陳瑋琪;;中國(guó)船舶科學(xué)研究中心近期空化流動(dòng)研究進(jìn)展[A];第十一屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十四屆全國(guó)水動(dòng)力學(xué)研討會(huì)并周培源誕辰110周年紀(jì)念大會(huì)文集(上冊(cè))[C];2012年
5 易燦;李根生;張定國(guó);;圍壓下噴嘴空化起始能力的實(shí)驗(yàn)研究[A];第十八屆全國(guó)水動(dòng)力學(xué)研討會(huì)文集[C];2004年
6 楊慶;張建民;戴光清;李鵬;;高速突擴(kuò)流空化初生及比尺效應(yīng)試驗(yàn)研究[A];第二十一屆全國(guó)水動(dòng)力學(xué)研討會(huì)暨第八屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨兩岸船舶與海洋工程水動(dòng)力學(xué)研討會(huì)文集[C];2008年
7 彭曉星;;發(fā)展空化及其不穩(wěn)定現(xiàn)象研究[A];第二十五屆全國(guó)水動(dòng)力學(xué)研討會(huì)暨第十二屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議文集(上冊(cè))[C];2013年
8 陳笑然;閻兆立;陳杰;程曉斌;李曉東;;水泵空化的超聲主動(dòng)探測(cè)方法[A];泛在信息社會(huì)中的聲學(xué)——中國(guó)聲學(xué)學(xué)會(huì)2010年全國(guó)會(huì)員代表大會(huì)暨學(xué)術(shù)會(huì)議論文集[C];2010年
相關(guān)博士學(xué)位論文 前10條
1 王健;水力裝置空化空蝕數(shù)值計(jì)算與試驗(yàn)研究[D];江蘇大學(xué);2015年
2 張寧;離心泵內(nèi)部非穩(wěn)態(tài)流動(dòng)激勵(lì)特性研究[D];江蘇大學(xué);2016年
3 孫鐵志;熱力學(xué)敏感流體空化流動(dòng)三維數(shù)值模擬研究[D];哈爾濱工業(yè)大學(xué);2016年
4 蘇硯文;基于LBM-LES的水翼繞流及空化流的并行數(shù)值模擬與實(shí)驗(yàn)研究[D];中國(guó)農(nóng)業(yè)大學(xué);2017年
5 郭嬙;葉頂間隙泄漏渦流及空化流場(chǎng)特性研究[D];中國(guó)農(nóng)業(yè)大學(xué);2017年
6 楊慶;空化初生機(jī)理及比尺效應(yīng)研究[D];四川大學(xué);2005年
7 王柏秋;水下高速航行體非定?栈鲌(chǎng)數(shù)值計(jì)算[D];哈爾濱工業(yè)大學(xué);2013年
8 李曉俊;離心泵葉片前緣空化非定常流動(dòng)機(jī)理及動(dòng)力學(xué)特性研究[D];江蘇大學(xué);2013年
9 楊靜;混流式水輪機(jī)尾水管空化流場(chǎng)研究[D];中國(guó)農(nóng)業(yè)大學(xué);2013年
10 郭關(guān)柱;強(qiáng)剪切流變儀的研制及剪切空化的實(shí)驗(yàn)研究[D];浙江大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 黃旭;表面特性對(duì)繞水翼空化流動(dòng)影響的研究[D];北京理工大學(xué);2015年
2 冉文q,
本文編號(hào):2366935
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2366935.html