基于晶格Boltzmann方法研究接觸角的測(cè)量和遲滯
[Abstract]:In the computational fluid dynamics, the lattice Boltzmann method, which is derived from the lattice gas and the molecular dynamic theory, has been developed into a reliable new way, and its efficiency, accuracy and robustness are also widely confirmed. It is no longer dependent on the Navier-Stokes equations of the macro continuum, and the macroscopic behavior of complex fluid is simulated from the micro-model, and the successful application in the complex fluid movement such as particle flow, thermal flow, micro-fluid and the like is studied. In particular, in the multi-phase flow research, since the lattice Boltzmann method does not need the boundary integration, the difficulties encountered by the traditional CFD method in tracking a large number of dispersed phase interfaces are avoided. Based on the principle of thermodynamics, the research group put forward a multi-phase flow model with thermodynamic consistency and Galileo invariance, which laid the foundation for the study of surface wetting. Surface wetting is a common natural phenomenon; as a feature of surface wettability, the contact angle is the result of three-phase interaction of gas, liquid and solid surface, and also is a common physical quantity in research and application. Although the lattice Boltzmann method has made great success in the simulation of the surface wetting, there is no reliable algorithm to calculate the dynamic contact angle; even the static contact angle can only be measured using an ideal spherical cap model or using an external tool. First, the chemical potential boundary condition is used to drop the liquid drop directly on the substrate, no transition zone is needed, and the contact angle can be measured directly from the three contact points. The method of calculating the dynamic contact angle in real time is presented by analyzing the micro-shape of the contact angle, using the intersection point of the gas-liquid interface and the second-row lattice line to determine the tangent. The contact angle calculated by the method and the theoretical calculation result are compared with the system under the condition of ignoring the gravity. When the temperature is 0. 7 and 0. 8, the results of the method are very good in the range of 30 to 160 degrees, and the calculation result of the method is accurate. On the same solid interface, the droplet radius is from 20 to 200 grids, and the calculated contact angle remains unchanged, indicating that the calculation result of the method is stable. In the case of gravity, the droplets and the suspended droplets in a different plane from 0. 1 cm to 0. 5 cm were calculated. The results show that, with the change of the size, the deformation of the liquid drops is more and more large, but the contact angle of the liquid drop calculated by the current method remains unchanged. This is consistent with the theoretical expectation, and the micro essence of the contact angle is also truly reflected. the liquid drops are further placed on the solid surface which is arranged alternately in the water-friendly water, and when the surface inclination is not too large, the liquid drops can be inclined under the action of gravity, so that the contact angle hysteresis phenomenon is generated. The contact angle hysteresis is calculated using the surface of three different lipophilic water configurations, and the results show that, although the hydrophobic mode surface has a greater contact angle than the hydrophilic surface, and the droplets are less prone to instability, the tendency of the contact angle hysteresis to increase with the inclination of the surface is substantially uniform. After the unstable sliding, the liquid drops can slide through the hydrophobic strip continuously, the advancing angle gradually increases and then suddenly decreases, the back angle gradually decreases and then suddenly increases, the variation of the two is generally not synchronized, resulting in a dynamic fluctuation state of the contact angle hysteresis. The dynamic waveform of the contact angle hysteresis is related to the phase of the forward and backward angles, and contains high-order fluctuations due to the shaking of the droplets. These studies on contact angle and hysteresis have contributed to an in-depth understanding and practical application of the wetting phenomenon. The lateral migration of the cross-flow layer in the pipe flow is a wonderful natural phenomenon, and has developed into a hot spot in the field of micro-flow control in recent years. By using the multi-relaxed lattice Boltzmann method, we have studied the phenomenon of the inertia of the elliptic particles. Similar to the classical Sere-Silberberg effect, elliptical particles also exhibit lateral migration and balance. but because of its non-circular geometry, the motion of the elliptical particles also includes non-uniform torsional and periodic vibrations. The influence of the Reynolds number, the blocking ratio and the aspect ratio on the trajectory of the elliptic motion is studied respectively. It is found that the influence of the change of the Reynolds number on the equilibrium position of the ellipse is very small, the change rate of the equilibrium position is only 3% when the Reynolds number changes from 3 to 300, and the larger the blocking ratio is, The closer the equilibrium position is to the center line of the pipe, the more the effect of the particle convection field is; with the increase of the aspect ratio, the rotation period of the elliptical particles becomes shorter, and the equilibrium position exhibits a saddle-shaped change, reaching the lowest point when the aspect ratio is close to 0.5. This work has a positive effect on the study of the blood flow of birds with ovoid or elliptical red blood cells.
【學(xué)位授予單位】:廣西師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O35
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張霞;李鳳濱;盛金昌;詹美禮;羅玉龍;;格子Boltzmann方法模擬土體滲流場(chǎng)研究[J];水電能源科學(xué);2012年10期
2 梁功有;曾忠;姚麗萍;張良奇;邱周華;梅歡;;二維方腔內(nèi)熱表面張力流的格子Boltzmann方法模擬[J];重慶大學(xué)學(xué)報(bào);2012年09期
3 閻廣武,邵顯,胡守信;用格子Boltzmann方法研究波及其粘性實(shí)驗(yàn)[J];吉林大學(xué)自然科學(xué)學(xué)報(bào);1996年04期
4 任晟;張家忠;張亞;苗衛(wèi)丁;;零質(zhì)量射流激勵(lì)下誘發(fā)液體相變及其格子Boltzmann方法模擬[J];物理學(xué)報(bào);2014年02期
5 呂曉陽(yáng),李華兵;用格子Boltzmann方法模擬高雷諾數(shù)下的熱空腔黏性流[J];物理學(xué)報(bào);2001年03期
6 許鶴林;馬建敏;;利用格子Boltzmann方法數(shù)值模擬Rayleigh-Benard對(duì)流[J];力學(xué)季刊;2010年02期
7 張立換;康秀英;吉馭嬪;;格子Boltzmann方法模擬二維軸對(duì)稱狹窄血管內(nèi)的脈動(dòng)流[J];北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年02期
8 龔帥;郭照立;;流向振蕩圓柱繞流的格子Boltzmann方法模擬[J];力學(xué)學(xué)報(bào);2011年01期
9 H·內(nèi)瑪?shù)?M·法哈第;K·賽迪戈亥;M·M·皮柔茲;N·N·阿巴塔瑞;黃雅意;;前后排列旋轉(zhuǎn)圓柱體對(duì)流熱交換的格子Boltzmann方法解[J];應(yīng)用數(shù)學(xué)和力學(xué);2012年04期
10 何云,李華兵,陳若航,劉慕仁,孔令江;Couette流和空腔粘性流的格子Boltzmann方法模擬[J];計(jì)算物理;2000年Z1期
相關(guān)會(huì)議論文 前7條
1 梁功有;曾忠;張永祥;張良奇;姚麗萍;邱周華;;封閉方腔內(nèi)自然對(duì)流的格子Boltzmann方法模擬[A];重慶力學(xué)學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集[C];2009年
2 鄧義求;唐政;董宇紅;;基于格子Boltzmann方法對(duì)氣動(dòng)聲學(xué)的應(yīng)用研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
3 唐政;鄧義求;董宇紅;;基于格子Boltzmann方法對(duì)多孔介質(zhì)壁湍流減阻減噪機(jī)理的研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
4 鄧林;張?jiān)?解孝林;周華民;;共混高聚物剪切粘度的格子Boltzmann方法模擬[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第14分會(huì):流變學(xué)[C];2014年
5 王星;謝華;;基于浸入邊界-格子Boltzmann方法的仿生機(jī)器魚的數(shù)值模擬[A];第十三屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十六屆全國(guó)水動(dòng)力學(xué)研討會(huì)論文集——C計(jì)算流體力學(xué)[C];2014年
6 戴傳山;劉學(xué)章;;格子Boltzmann方法用于多孔介質(zhì)與自由流體開口腔體內(nèi)自然對(duì)流的數(shù)值模擬研究[A];中國(guó)地球物理學(xué)會(huì)第二十七屆年會(huì)論文集[C];2011年
7 李學(xué)民;曹俊興;王興建;;利用格子Boltzmann方法模擬孔隙介質(zhì)中的流體滲流[A];中國(guó)地球物理學(xué)會(huì)年刊2002——中國(guó)地球物理學(xué)會(huì)第十八屆年會(huì)論文集[C];2002年
相關(guān)博士學(xué)位論文 前10條
1 楊鑫;基于格子Boltzmann方法的橢球粒子在簡(jiǎn)單流體中的運(yùn)動(dòng)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
2 龔帥;親疏水性對(duì)池沸騰傳熱影響的格子Boltzmann方法研究[D];上海交通大學(xué);2015年
3 任俊杰;基于格子Boltzmann方法的頁(yè)巖氣微觀流動(dòng)機(jī)理研究[D];西南石油大學(xué);2015年
4 譚玲燕;用格子Boltzmann方法模擬圓柱的攪動(dòng)流動(dòng)及減阻[D];吉林大學(xué);2011年
5 柴振華;基于格子Boltzmann方法的非線性滲流研究[D];華中科技大學(xué);2009年
6 丁麗霞;用于模擬粘性流體流動(dòng)的格子Boltzmann方法[D];吉林大學(xué);2009年
7 張婷;多孔介質(zhì)內(nèi)多組分非均相反應(yīng)流的格子Boltzmann方法研究[D];華中科技大學(xué);2012年
8 魯建華;基于格子Boltzmann方法的多孔介質(zhì)內(nèi)流動(dòng)與傳熱的微觀模擬[D];華中科技大學(xué);2009年
9 張文歡;基于格子Boltzmann方法的撞擊流流動(dòng)不穩(wěn)定性的數(shù)值研究[D];華中科技大學(xué);2013年
10 宋香霞;用格子Boltzmann方法分析燃料電池陽(yáng)極的三維結(jié)構(gòu)和性能[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 蘭中周;一類非線性偏微分方程的格子Boltzmann方法[D];東華理工大學(xué);2014年
2 李冬杰;基于格子Boltzmann方法的顱內(nèi)動(dòng)脈瘤直血管和彎曲血管三維數(shù)值研究[D];華中科技大學(xué);2014年
3 年玉澤;基于Boltzmann方法的植被發(fā)育斜坡土體大孔隙滲流研究[D];昆明理工大學(xué);2016年
4 姜繼鼎;基于格子Boltzmann方法的活性粒子布朗運(yùn)動(dòng)的數(shù)值模擬研究[D];西安建筑科技大學(xué);2016年
5 史文秋;基于格子Boltzmann方法的細(xì)微通道內(nèi)脈沖加熱下沸騰相變的研究[D];華北電力大學(xué)(北京);2016年
6 李蓉;基于晶格Boltzmann方法的三維旋轉(zhuǎn)流體中二次流研究[D];廣西師范大學(xué);2016年
7 王特;求解含跳系數(shù)的單溫輻射擴(kuò)散方程的格子Boltzmann方法[D];湘潭大學(xué);2016年
8 楊超;基于格子Boltzmann方法的微尺度氣體流動(dòng)模擬[D];東北大學(xué);2013年
9 孫爍然;利用非均勻格子Boltzmann方法研究支架對(duì)顱內(nèi)動(dòng)脈瘤血流動(dòng)力學(xué)的影響[D];華中科技大學(xué);2015年
10 陳慧;基于晶格Boltzmann方法研究接觸角的測(cè)量和遲滯[D];廣西師范大學(xué);2017年
,本文編號(hào):2345840
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2345840.html