不同導(dǎo)流條長(zhǎng)度管道車運(yùn)移時(shí)的縫隙螺旋流流速特性研究
[Abstract]:Hydraulic transportation of barrel-filling pipeline is an environmental-friendly, energy-saving, high-efficient and safe way of transportation. This transportation mode accords with the concept of sustainable development in our country and is a new type of pipeline hydraulic transportation method of saving energy and environmental protection. This transportation method is different from the traditional hydraulic transportation method of slurry pipeline and shaped material pipeline. It is a kind of science and technology with great prospect of research and development in the new era and has a very broad prospect of application and development. In this paper, the research on the energy consumption of pipeline train hydraulic transportation (51179116), the characteristics of helical flow force of pipeline gap (51109155) and the natural science fund project of Shanxi Province (2015011067) are combined with the National Natural Fund project "Research on Energy consumption of Pipeline Trains" (51179116). Through the combination of experiment and numerical simulation, the flow velocity characteristics of the slot helical flow produced by the pipeline vehicle with different diversion strip lengths are studied. The conclusions are as follows: (1) when the length of the guide strip is a unique variable, The moving speed of pipeline car in the pipeline increases with the increase of the length of the guide strip. When the vehicle type of pipeline vehicle is the only variable, the speed of pipeline vehicle moving from large to small is L 脳 DX 150 脳 70mm pipeline vehicle, L 脳 D0 100 脳 70mm pipeline car, L 脳 DX 150 脳 60mm pipeline car. It can be seen that the influence of pipeline car diameter on the moving speed is greater than the length of pipeline car. (2) when the pipeline car with different length of diversion strip moves in the straight section, The velocity distribution of the flow in the gap is slightly different in the section near the vehicle end of the pipeline, mainly because the vortex region formed by the velocity of velocity is more and the velocity gradient becomes larger. For the same pipe-car, the 3-D velocity distribution law of helical flow along the body direction is from instability to stability, and then to instability. The axial velocity distribution of the slot helical flow is relatively stable relative to its radial and circumferential velocity distribution, and the axial velocity is much larger than the radial and circumferential velocity of the slot flow. The increase of the length of the guide strip will affect the direction of the radial flow in the slot. The longer the strip, the more the flow direction deviates from the center of the pipe. With the increase of the length of the guide strip of the same type, the flow velocity of each section in the slot basically increases. (3) taking section 3 of the car as the research section, When there is no guide strip near the polar axis, the axial velocity of the slot helical flow reaches the maximum value at the point of 44mm from the center of the pipe, and when there is a guide strip near the polar axis, the trend of the axial velocity of the flow on the axis changes obviously. The farther away from the center of the pipeline, the greater the axial velocity is. (4) the axial velocity of the polar axis of the test section in the gap is similar to that of the body under the same conditions. Along the body from the rear section to the front section of the car showed a trend of "M" glyph, which increased first, then decreased and then decreased. However, the radial and circumferential velocity of the helical flow in the crevice is higher than that in the test section. At the four sections (the section in the middle of the vehicle and the middle section in the front of the vehicle), a large number of values appear. (5) by comparing the average moving speed, the average velocity of the slot flow and the average velocity of the flow in the pipeline, the average moving speed, the average velocity of the slot flow and the flow velocity in the pipeline are compared with each other. When the length of the guide strip increases, the change rate of the average velocity of the pipeline car and the average velocity of the slot flow is obtained. The influence of different length of guide strip on the moving speed and the average velocity of slot flow of pipeline vehicle is analyzed. (6) the method of numerical simulation is used. The 3-D velocity of the helical flow field in the slot of pipeline car with different length of diversion strip is simulated and compared with the experimental results, and the results are in good agreement with the experimental results.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TV134
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 靳文宇;李永業(yè);張樂(lè)元;束德方;;螺旋流研究進(jìn)展及工業(yè)應(yīng)用[J];山西水利;2009年01期
2 翟應(yīng)虎,劉希圣;純粘性流體環(huán)空螺旋流層流流場(chǎng)的理論分析[J];華東石油學(xué)院學(xué)報(bào)(自然科學(xué)版);1985年02期
3 彭龍生;宋天權(quán);;有界螺旋流的摩阻耗能試驗(yàn)研究[J];太原工業(yè)大學(xué)學(xué)報(bào);1988年03期
4 彭龍生,宋天權(quán),李同月;壓力縫隙螺旋流的消能特性[J];水利學(xué)報(bào);1993年10期
5 孫明光,梁永儀;螺旋流中擾動(dòng)的傳播[J];中山大學(xué)學(xué)報(bào)(自然科學(xué)版);1993年04期
6 張開(kāi)泉;螺旋流的流速結(jié)構(gòu)及排沙機(jī)理初探[J];石河子農(nóng)學(xué)院學(xué)報(bào);1984年01期
7 熊鰲魁,魏慶鼎;一種強(qiáng)螺旋流現(xiàn)象的實(shí)驗(yàn)研究[J];流體力學(xué)實(shí)驗(yàn)與測(cè)量;1999年04期
8 武鵬林;趙喜云;;常切力盤(pán)狀螺旋流特性的試驗(yàn)與研究[J];太原理工大學(xué)學(xué)報(bào);2006年02期
9 王慶祥;;螺旋流的形成和排沙效果試驗(yàn)[J];人民黃河;1987年05期
10 趙運(yùn)兵;;螺旋流在工業(yè)上的應(yīng)用研究概況[J];山西水利;2007年01期
相關(guān)會(huì)議論文 前5條
1 薛百文;楊世春;楊勝?gòu)?qiáng);;螺旋流的形成方式及各種起旋裝置的對(duì)比分析[A];全國(guó)生產(chǎn)工程第九屆年會(huì)暨第四屆青年科技工作者學(xué)術(shù)會(huì)議論文集(二)[C];2004年
2 彭龍生;劉春晶;盧準(zhǔn)煒;張羽;;水平管螺旋流中的固粒跡線[A];第十三屆全國(guó)水動(dòng)力學(xué)研討會(huì)文集[C];1999年
3 王樹(shù)立;饒永超;武玉憲;周詩(shī)崠;孫璐;;以紐帶起旋的氣液螺旋流實(shí)驗(yàn)研究[A];第十一屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十四屆全國(guó)水動(dòng)力學(xué)研討會(huì)并周培源誕辰110周年紀(jì)念大會(huì)文集(上冊(cè))[C];2012年
4 鄒裔;;一種多約束面螺旋流道的電火花加工[A];陜西省機(jī)械工程學(xué)會(huì)電加工分會(huì)第七屆學(xué)術(shù)年會(huì)論文集[C];2000年
5 鄒裔;;一種多約束面螺旋流道的電火花加工[A];中國(guó)電子學(xué)會(huì)生產(chǎn)技術(shù)分會(huì)電加工專業(yè)委員會(huì)第六屆學(xué)術(shù)年會(huì)論文集[C];2000年
相關(guān)博士學(xué)位論文 前2條
1 王翠華;三角形螺旋流道內(nèi)流體流動(dòng)與強(qiáng)化傳熱研究[D];天津大學(xué);2014年
2 王小兵;基于PIV的石油工程中螺旋流動(dòng)研究[D];東北石油大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 張峰;單車在不同起旋條高度下運(yùn)移時(shí)平直管段的水力特性研究[D];太原理工大學(xué);2013年
2 高瑞杰;深海采礦揚(yáng)礦管內(nèi)高速螺旋流的數(shù)值模擬與仿真[D];江西理工大學(xué);2016年
3 胡志毅;不同導(dǎo)流條長(zhǎng)度管道車運(yùn)移時(shí)的縫隙螺旋流流速特性研究[D];太原理工大學(xué);2017年
4 王曉飛;管內(nèi)螺旋流的實(shí)驗(yàn)研究與分析[D];武漢理工大學(xué);2004年
5 張紅霞;局部起旋式圓管螺旋流三維湍流的試驗(yàn)研究及數(shù)值模擬[D];太原理工大學(xué);2004年
6 容瓊;一種螺旋流發(fā)生器的數(shù)值試驗(yàn)研究[D];武漢理工大學(xué);2007年
7 黃兆瑋;直管內(nèi)流體—顆粒螺旋流動(dòng)的三維數(shù)值分析[D];西安理工大學(xué);2004年
8 郭永輝;管內(nèi)流體脈動(dòng)及螺旋流對(duì)流換熱的數(shù)值模擬[D];重慶大學(xué);2006年
9 秦金霞;基于超疏水膜的螺旋流油水分離器設(shè)計(jì)[D];西南石油大學(xué);2013年
10 王春光;圓管中螺旋流數(shù)值模擬及二維PIV實(shí)驗(yàn)研究[D];大慶石油學(xué)院;2009年
,本文編號(hào):2345037
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2345037.html