青藏高原東南緣演化過程的動力學模擬
[Abstract]:The large-scale uplift of the Qinghai-Xizang Plateau originated from the subduction of the Indian plate from 50 Myrs to the oceanic continent of the Eurasian plate into a continental collision, and then sustained compression of the Eurasian plate. During this process, the southern Qinghai-Xizang Plateau experienced significant crustal shortening and thickening, resulting in a very high topography. However, the uplift mechanism in other regions of the Tibetan Plateau, especially the plateau margin, is still controversial. Under the compression of the Indian plate, the upper crust of the central Qinghai-Xizang Plateau is in an obvious stretching state in the east-west direction, with the material moving eastward and extruding from the eastern margin. The southeastern margin of Qinghai-Xizang Plateau, as the main outflow channel of material, has three typical characteristics. Firstly, the matter of Qinghai-Xizang Plateau is blocked by Sichuan Basin on the eastern margin, and a very steep terrain is formed on the margin of Qinghai-Sichuan Basin, which falls from 4500m to 500m within 100 km. Secondly, the material flow in the Qinghai-Xizang Plateau is divided into two branches in Sichuan Basin, one flowing to North China and the other to South China, and the matter flowing to South China rotates clockwise around the eastern Himalayan tectonic junction. Third, the southeast margin of Qinghai-Xizang Plateau has strong tectonic activity, wide distribution of faults and multiple earthquakes. In order to understand the geological evolution of the southeastern margin of the Qinghai-Xizang Plateau, an analytical model and a numerical model were established to simulate the uplift process of the Longmen Mountains in view of the margin of the Qinghai-Xizang Plateau and Sichuan Basin. The distribution of lithospheric viscosity coefficient and the variation of stress and strain rate are determined. At the same time, we are establishing a three-dimensional numerical model of Sichuan-Yunnan region, trying to study the influence of shallow surface structure on the movement of Qinghai-Xizang Plateau and its southeast margin, and to establish the crustal and mantle coupling model in this region. The theory of channel flow in the lower crust can explain the uplift of the eastern edge of the Qinghai-Xizang Plateau well, but the previous analytical models are obviously inconsistent with the facts, so we have established a new model. The channel thickness increases with the inflow of matter. The results of our analytical model show that the larger the viscosity coefficient of the lower crust is, the greater the gradient of topography is at the boundary. The viscosity coefficient of the lower crust in Sichuan Basin is 1022 Pasas through the restriction of the actual terrain, which is 10 times of the previous results. On the basis of the analytical model, we consider more factors that may affect the evolution process, and establish a numerical model. Based on the results of the analytical model on the viscosity coefficient of the lower crust, it is further determined that the viscosity coefficient of the upper crust and the lithospheric mantle of the Sichuan basin is 1024 Pasas and 1023 Pasas respectively. In the uplift process, the stress and strain rates are very large in the front edge of uplift and smaller in other regions because of the large viscosity coefficient of the lower crust of Sichuan basin and the obstruction of material flow. During the uplift, the stress state in the upper crust of the Longmen Mountain region may undergo a transition from tensile to compression, which may be related to many types of faults near Longmen Mountain. In addition, the anisotropic characteristics of Qinghai-Xizang Plateau and Sichuan-Yunnan region are different. The transformation of fast wave polarization direction may be due to the different deformation coupling modes of crust and mantle in Qinghai-Xizang Plateau and Sichuan-Yunnan region.
【學位授予單位】:中國科學技術大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P542
【相似文獻】
相關期刊論文 前10條
1 袁興紅,王玉連;測定變溫液體粘滯系數(shù)的實驗方法[J];安徽農(nóng)業(yè)技術師范學院學報;2001年02期
2 朱莪青;;氣體粘滯系數(shù)測定的簡法[J];物理實驗;1982年02期
3 秦繼民;不用“分隊”假設推導氣體粘滯系數(shù)的簡便方法[J];廣西師范大學學報(自然科學版);1985年01期
4 陳賢隆;;用泊肖葉公式測液體粘滯系數(shù)條件的說明[J];物理實驗;1986年01期
5 陳麗群;高粘度液體粘滯系數(shù)測定儀[J];大學物理實驗;1996年01期
6 許定生;液體粘滯系數(shù)的準確測量和計算[J];物理實驗;1999年01期
7 曹鋼,于少華;測量粘滯系數(shù)計時起點的確定[J];山東輕工業(yè)學院學報(自然科學版);1999年03期
8 蘇莉,李子軍;推導粘滯系數(shù)的一種方法[J];內(nèi)蒙古民族師院學報(自然科學版);2000年02期
9 趙淑云,溫淑珍,汪兆軍;轉(zhuǎn)動法測粘滯系數(shù)暫態(tài)過程分析[J];高師理科學刊;2001年03期
10 魯凱翔,鄒俊生;測液體粘滯系數(shù)的一種方法[J];南昌航空工業(yè)學院學報;2001年03期
相關會議論文 前5條
1 梁麗芳;邢達;陳同生;裴沂輝;;用熒光相關譜技術測量細胞核漿的粘滯系數(shù)[A];中國光學學會2006年學術大會論文摘要集[C];2006年
2 馮仁發(fā);張錫珍;吳錫真;卓益忠;;考慮對相互作用的粘滯系數(shù)的微觀計算[A];第五次核物理會議資料匯編(下冊)[C];1982年
3 錢鈞;康明;王槿;張春玲;;毛細管法測量液體粘滯系數(shù)[A];第六屆全國高等學校物理實驗教學研討會論文集(下冊)[C];2010年
4 張玉清;張?zhí)N華;張景霞;;雷諾方程組的封閉與應用及普朗特紊動切應力和紊動粘滯系數(shù)理論計算[A];第十六屆全國水動力學研討會文集[C];2002年
5 陳剛;朱震剛;;內(nèi)耗、粘滯系數(shù)與金屬材料的微觀結(jié)構[A];內(nèi)耗與超聲衰減——第五屆全國固體內(nèi)耗與超聲衰減學術會議論文集[C];1997年
相關碩士學位論文 前7條
1 張健;三維粘彈性樁基動力測試理論與實踐研究[D];合肥工業(yè)大學;2016年
2 彭典典;青藏高原東南緣演化過程的動力學模擬[D];中國科學技術大學;2017年
3 張樂;有效動力論研究高溫QCD物質(zhì)的粘滯系數(shù)[D];華中師范大學;2011年
4 高博;基于新型磁致伸縮傳感器的管道缺陷和液體粘滯系數(shù)檢測研究[D];北京工業(yè)大學;2014年
5 郭盼盼;PNJL模型中熱密夸克物質(zhì)的體粘滯系數(shù)[D];華中師范大學;2011年
6 吳小云;濃懸浮液粘滯系數(shù)與顆粒粒徑分布的測量[D];中南大學;2013年
7 劉健;化學非平衡QGP系統(tǒng)的切向粘滯系數(shù)和流體力學演化[D];華中師范大學;2011年
,本文編號:2257447
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2257447.html