2-度量空間上滿足隱式條件的兩個映射的公共不動點
[Abstract]:Banach Fixed Point Theorem is one of the most basic theories in fixed point theory, and it is widely used in mathematics and other fields. Many scholars generalize and improve Banach Fixed Point Theorem, especially some important conclusions about the existence of fixed points, common fixed points and coincidence points in 2-metric spaces. For example, Geraghty fixed point theorem, Kannan fixed point theorem, Chatterjea fixed point theorem, integral fixed point theorem and some deformation and generalization results. In this paper, we first introduce a class of functions called Geraghty functions, and consider and combine Kannan and Chatterjea contraction conditions. The existence theorems of common fixed points for two mappings satisfying the contraction conditions of Geraghty-kannan type and Geraghty-chatterjea type on 2-metric spaces are obtained. These two results are the extended results of Geraghty-Banach theorem. Secondly, by introducing some real functions, the implicit contraction conditions with integral type are established, and two implicit contraction conditions satisfying these conditions are given. The results obtained in this paper extend and improve some known results well, and point out a method and train of thought of how to extend the conclusion of real metric to 2-metric space.
【學(xué)位授予單位】:延邊大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O177.91
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 樸勇杰;;非正規(guī)錐度量空間上具有Suzuki壓縮條件映射的不動點定理[J];吉林大學(xué)學(xué)報(理學(xué)版);2015年04期
2 王亭;袁玉嬌;杜慧宇;金月曦;樸勇杰;;2-度量空間上兩個膨脹映射的重合點和公共不動點[J];延邊大學(xué)學(xué)報(自然科學(xué)版);2014年02期
3 樸勇杰;;2-度量空間上φ_j-擬收縮型映射族的公共不動點的唯一性[J];數(shù)學(xué)物理學(xué)報;2012年06期
4 張丹;谷峰;;2-距離空間中一類Φ-壓縮條件下的公共不動點定理[J];江西師范大學(xué)學(xué)報(自然科學(xué)版);2011年06期
5 樸勇杰;;2-度量空間上具有相同擬收縮型條件的映射族的唯一公共不動點[J];南京大學(xué)學(xué)報數(shù)學(xué)半年刊;2010年01期
6 ;UNIQUE COMMON FIXED POINT OF A FAMILY OF SELF-MAPS WITH SAME TYPE CONTRACTIVE CONDITION IN 2-METRIC SPACE[J];Analysis in Theory and Applications;2008年04期
7 樸勇杰,金光植;2-度量空間上的新的公共不動點定理(英文)[J];延邊大學(xué)學(xué)報(自然科學(xué)版);2001年04期
8 ;閉軌道直徑函數(shù)的不動點[J];應(yīng)用數(shù)學(xué)和力學(xué);1996年02期
,本文編號:2222212
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2222212.html