天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

非齊次空間的一種SIRS傳染病模型的穩(wěn)態(tài)解

發(fā)布時間:2018-08-23 09:36
【摘要】:傳染病模型是為了方便研究傳染病在個體之間和地區(qū)之間的發(fā)病機制及擴散規(guī)律,通過運用一些合理的假設(shè),建立適當(dāng)?shù)臄?shù)學(xué)模型,并將可決定傳染病擴散的各個因素轉(zhuǎn)化為已建立數(shù)學(xué)模型中的相關(guān)數(shù)學(xué)變量,利用動力學(xué)理論來分析疾病的發(fā)展趨勢,以達到幫助我們預(yù)測和控制日常生活中疾病的目的.基本再生數(shù)是傳染病模型中的重要參數(shù),而基本再生數(shù)決定了疾病是否蔓延或者消退.但是我們逐漸認(rèn)識到空間擴散和環(huán)境的異質(zhì)性不僅是影響疾病消退和蔓延的重要因素,還決定了疾病傳播方式和傳播速度.這樣來說的話通常的基本再生數(shù)不足以描述疾病的傳播,也不能反映所研究區(qū)域的空間特征.從而很有必要研究擴散對于疾病在區(qū)域中的傳播和控制所起的作用.伴隨這些要求,樓元老師對一類非均質(zhì)區(qū)域下的SIS傳染病模型的穩(wěn)定性進行了分析.先考慮固定區(qū)域上的SIS反應(yīng)擴散問題,通過定義具有齊次Neumann邊界條件的反應(yīng)擴散問題的基本再生數(shù)R_0~N,討論無病平衡點和染病平衡點的穩(wěn)定性;在此基礎(chǔ)上,引入自由邊界描述傳染病傳播的邊沿,定義具有齊次Dirichlet邊界條件的反應(yīng)擴散問題的基本再生數(shù)R_0~D,從而引入具有自由邊界的SIS模型的基本再生數(shù)R_0~F(t),并討論了疾病的消退和蔓延.本文采用了一種新的非齊次的SIRS傳染病模型.基本思路是:先是構(gòu)造本模型在具有Neumann邊界條件下的基本再生數(shù)R_0,同時討論傳染病者的擴散對基本再生數(shù)R_0的影響,即如果R_01,則無病平衡點全局漸近穩(wěn)定,如果R_01,則無病平衡點不穩(wěn)定.再是,在低危險區(qū)域,我們運用分叉理論研究染病平衡點的存在性和穩(wěn)定性.最終結(jié)果顯示,減少染病者的擴散并不有利于傳染病的消除,但染病平衡點的不穩(wěn)定性表明傳染病可以得到控制.本文在第一章緒論的第一節(jié)中具體介紹了SIRS傳染病模型的背景來源,第二節(jié)中給出近來研究現(xiàn)狀;第二章第一節(jié)給出了Lyapunov穩(wěn)定性的,第二節(jié)給出Crandall-Rabinowitz分叉理論的知識,第三節(jié)給出局部分叉圖像和穩(wěn)定性變換原則的相關(guān)知識;第三章中討論了所研究的SIRS反應(yīng)擴散傳染病模型的基本再生數(shù)的定義和特征、無病平衡點的穩(wěn)定性、染病平衡點的存在性與穩(wěn)定性和局部分叉圖像的方向.第四章對本文的研究做了相關(guān)總結(jié).
[Abstract]:The infectious disease model is to facilitate the study of the pathogenesis and diffusion of infectious diseases between individuals and regions, and to establish appropriate mathematical models by using some reasonable assumptions. The factors that can determine the spread of infectious diseases are transformed into relevant mathematical variables in established mathematical models, and the development trend of diseases is analyzed by using the kinetic theory to help us predict and control diseases in our daily life. The number of basic regeneration is an important parameter in infectious disease model, and the number of basic regeneration determines whether the disease is spreading or fading. However, we have come to realize that spatial diffusion and environmental heterogeneity are not only important factors that affect the extinction and spread of disease, but also determine the mode and speed of disease transmission. In this case, the usual number of basic regeneration is not sufficient to describe the spread of disease, nor can it reflect the spatial characteristics of the region studied. It is therefore necessary to study the role of diffusion in the spread and control of disease in the region. In response to these requirements, the stability of a class of SIS infectious disease models in heterogeneous regions was analyzed. Considering the SIS reaction-diffusion problem in a fixed region, the stability of disease-free equilibrium point and disease-free equilibrium point is discussed by defining the basic regenerative number of the reaction-diffusion problem with homogeneous Neumann boundary condition. The free boundary is introduced to describe the edge of infectious disease propagation, and the basic number of reaction-diffusion problems with homogeneous Dirichlet boundary condition is defined. The basic number of reproduction of SIS model with free boundary is introduced, and the extinction and spread of disease are discussed. In this paper, a new non-homogeneous SIRS infectious disease model is used. The basic ideas are as follows: first, we construct the basic regenerative number R0 with Neumann boundary condition, and at the same time discuss the influence of the diffusion of infectious diseases on the basic regenerative number R0, that is, if R201, the disease-free equilibrium point is globally asymptotically stable. If RW is 01, the disease-free equilibrium is unstable. Then, in the low risk area, we use bifurcation theory to study the existence and stability of the infection equilibrium. The final results show that reducing the spread of infectious diseases is not conducive to the elimination of infectious diseases, but the instability of infection equilibrium points indicates that infectious diseases can be controlled. In the first section of the first chapter, the background of SIRS infectious disease model is introduced in detail. In the second section, the recent research status is given. In the second chapter, the stability of Lyapunov is given, and the knowledge of Crandall-Rabinowitz bifurcation theory is given in the second section. In the third section, we give the knowledge of the local bifurcation image and the principle of stability transformation. In chapter 3, we discuss the definition and characteristics of the basic reproduction number of the SIRS model, and the stability of the disease-free equilibrium. The existence and stability of the equilibrium point and the direction of the local bifurcation image. Chapter four summarizes the research of this paper.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O175

【參考文獻】

相關(guān)期刊論文 前9條

1 王蕾;王凱;;具有標(biāo)準(zhǔn)發(fā)生率和因病死亡率的離散SIRS傳染病模型的全局穩(wěn)定性[J];北華大學(xué)學(xué)報(自然科學(xué)版);2017年01期

2 蔣丹華;聶華;;一類空間非齊次的SIR傳染病模型的穩(wěn)態(tài)解[J];工程數(shù)學(xué)學(xué)報;2015年06期

3 黃倩;閔樂泉;;具有免疫接種的SIRS傳染病模型研究[J];計算機仿真;2014年03期

4 吳亭;;一類SIR傳染病離散模型的持久性與穩(wěn)定性[J];科技通報;2011年06期

5 辛京奇;王文娟;;一類帶有接種的SIR傳染病模型的全局分析[J];數(shù)學(xué)的實踐與認(rèn)識;2007年20期

6 楊玉華;;傳染病模型的研究及應(yīng)用[J];數(shù)學(xué)的實踐與認(rèn)識;2007年14期

7 李軍紅;崔寧;余秀萍;;一類SEIS模型的分岔及混沌[J];數(shù)學(xué)的實踐與認(rèn)識;2007年13期

8 魏巍;舒云星;;具有時滯的傳染病動力學(xué)模型數(shù)值仿真[J];計算機工程與應(yīng)用;2006年34期

9 王文娟;;無疾病潛伏期的傳染病動力學(xué)模型的閾值和再生數(shù)分析[J];運城學(xué)院學(xué)報;2005年05期

,

本文編號:2198648

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2198648.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ebf69***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com