基于SWAT模型的北洛河典型子流域降雨徑流模擬研究
[Abstract]:Taking the North Luohe River Basin on the Loess Plateau as the research area, the accuracy of PERSIANN precipitation products in the basin above the Beiluohe River hydrologic station is verified, the applicability of the SWAT model in the two subbasins of the North Luohe River is evaluated, and the different DEM data sources are analyzed. The effects of time scale and DEM resolution on the simulation results of rainfall runoff in Hulu River Basin were studied by resampling method and parameter rate determination method. The main conclusions are as follows: (1) in general, precipitation products underestimate the value of precipitation and can not estimate extreme precipitation well. For the average annual precipitation and extreme precipitation in flood season, the correlation coefficient of the direct extraction method is higher than that of linear interpolation method. Precipitation products underestimate precipitation in summer and autumn and overestimate precipitation in winter and spring. For seasonal average precipitation, the accuracy of summer is the highest, followed by spring. There are errors in both methods, and the precision of the direct extraction method is higher than that of the bilinear interpolation method. For the PERSIANN precipitation products, the annual average precipitation decreases with the increase of elevation. (2) the simulation results of the SWAT model in the two subbasins of the North Luohe River meet the precision requirements. Based on ASTER GDEM30m data, a monthly scale SWAT model was established to simulate rainfall runoff in two study areas of the Hulu River Basin and the North Luohe Wuqi Hydrologic Station. The simulation results can meet the precision requirements. Overall water balance is satisfied. The simulation results of Huluhezi watershed are more accurate than those of Wuqi hydrologic station. (3) the SWAT model has different sources for the simulation results of rainfall runoff. Based on the DEM data from two different sources of ASTER GDEM and STRM DEM, using three resampling methods such as nearest neighbor interpolation, bilinear interpolation and cubic convolution interpolation, the SWAT model of two different time scales of month and day is established. Two methods, SUFI-2 and PSO, are used to determine the parameters, and the multi-objective optimal selection model is introduced to evaluate the simulation results. The results show that the precision of extracting watershed topographic information from 30m ASTER GDEM data is the highest, and the model of DEM data obtained by nearest neighbor interpolation method is the best, which is better than the model built by 90m STRM DEM data after resampling DEM data. The model established by resampling DEM data has the best result of simulation by nearest neighbor interpolation method, and the model built by nearest neighbor interpolation method DEM has the highest precision of rate determination by using SUFI-2 method. The simulation results of the monthly scale model are better than that of the daily scale model. (4) the ASTER GDEM 30m data are resampled to 9 different resolution DEM data, and the SWAT model of the Hulu River Basin is established respectively on the monthly scale. Comparing the difference of hydro-topographic factors extracted from DEM data with different resolutions and simulating the effect of runoff. Dem resolution on slope, area extraction and watershed division, the effect on elevation extraction is relatively small. When the resolution of DEM is higher than 150m, the simulation results of the model are satisfactory and the model established by 30m DEM data is reasonable. The simulation results of the optimal parameter combination Dem model with the resolution of 120-150m need to be obtained through several iterations. When the resolution of the model is less than 600m DEM, the number of subbasins is reduced, and the simulation results are deviated to a certain extent.
【學位授予單位】:西北農(nóng)林科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P333.1
【相似文獻】
相關期刊論文 前10條
1 李曼曼;韓會玲;劉曉英;郝衛(wèi)平;;SWAT模型最佳子流域劃分方案研究——以云南洱海流域為例[J];中國農(nóng)業(yè)氣象;2012年02期
2 白薇;劉國強;董一威;許娟;雷曉輝;;SWAT模型參數(shù)自動率定的改進與應用[J];中國農(nóng)業(yè)氣象;2009年S2期
3 魏懷斌;張占龐;楊金鵬;;SWAT模型土壤數(shù)據(jù)庫建立方法[J];水利水電技術;2007年06期
4 榮琨;陳興偉;林文嬌;;晉江西溪流域非點源污染的SWAT模型模擬[J];亞熱帶資源與環(huán)境學報;2008年04期
5 喬衛(wèi)芳;牛海鵬;趙同謙;;基于SWAT模型的丹江口水庫流域農(nóng)業(yè)非點源污染的時空分布特征[J];長江流域資源與環(huán)境;2013年02期
6 梁小軍;江洪;王可;朱求安;;基于SWAT模型的岷江上游干旱河谷區(qū)水文特征情景模擬研究[J];干旱區(qū)資源與環(huán)境;2010年08期
7 陳理想;梁忠民;朱金峰;;SWAT模型在黃鴨河流域徑流模擬中的應用研究[J];水電能源科學;2011年10期
8 姚蘇紅;朱仲元;張圣微;張?zhí)K魯;李楊;;基于SWAT模型的內(nèi)蒙古閃電河流域徑流模擬研究[J];干旱區(qū)資源與環(huán)境;2013年01期
9 秦富倉;張麗娟;余新曉;岳永杰;葉俊道;王國強;;SWAT模型自動校準模塊在云州水庫流域參數(shù)率定研究[J];水土保持研究;2010年02期
10 竹磊磊;李娜;常軍;;SWAT模型在半濕潤區(qū)徑流模擬中的適用性研究[J];人民黃河;2010年12期
相關會議論文 前6條
1 王林;陳興偉;;SWAT模型及其在晉江西溪流域徑流模擬的應用[A];科學規(guī)劃與用水安全——福建省科協(xié)第六屆學術年會水利分會論文集[C];2006年
2 李昱;張弛;周惠成;沈必成;;SWAT模型在土地利用變化對徑流影響研究中的應用[A];中國原水論壇專輯[C];2010年
3 馬京津;朱靜;;基于SWAT模型的潮白河流域水資源對氣候變化的響應[A];創(chuàng)新驅(qū)動發(fā)展 提高氣象災害防御能力——S16第二屆城市氣象論壇——災害·環(huán)境·影響·應對[C];2013年
4 王苗;劉敏;夏智宏;;基于SWAT模型的洪湖流域供水資源模擬研究[A];第31屆中國氣象學會年會S10 第四屆氣象服務發(fā)展論壇——提高水文氣象防災減災水平,,推動氣象服務社會化發(fā)展[C];2014年
5 夏智宏;周月華;許紅梅;;基于SWAT模型的漢江流域徑流模擬[A];2008年湖北省氣象學會學術年會學術論文詳細文摘匯集[C];2008年
6 李英;彭少麟;陳寶明;;基于SWAT模型預測氣溫變化對珠江河口水環(huán)境的影響[A];聯(lián)合國開發(fā)計劃署UNDP/全球環(huán)境基金GEF/小額贈款項目SGP“湛江特呈島濱海濕地保護與可持續(xù)發(fā)展利用示范”項目論文成果匯編[C];2011年
相關博士學位論文 前3條
1 史曉亮;基于SWAT模型的灤河流域分布式水文模擬與干旱評價方法研究[D];中國科學院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所);2013年
2 張徐杰;氣候變化下基于SWAT模型的錢塘江流域水文過程研究[D];浙江大學;2015年
3 方玉杰;基于SWAT模型的贛江流域水環(huán)境模擬及總量控制研究[D];南昌大學;2015年
相關碩士學位論文 前10條
1 王瓊;基于SWAT模型的小清河流域氮磷污染負荷核算及總量控制[D];中國科學院煙臺海岸帶研究所;2015年
2 董陽;SWAT模型徑流模擬在黃河石嘴山站以上流域的應用[D];蘭州大學;2015年
3 李勝坤;基于SWAT模型的潮河流域徑流模擬[D];華中師范大學;2015年
4 趙傳普;基于SWAT模型的延河流域土地利用對徑流影響模擬研究[D];中國科學院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2015年
5 樊琨;涇河上游區(qū)SWAT模型徑流模擬與參數(shù)移植方法研究[D];西北農(nóng)林科技大學;2015年
6 代潤潤;基于SWAT模型的窟野河流域氣候變化與人類活動的水文效應研究[D];西北農(nóng)林科技大學;2015年
7 何文;基于RS/GIS和SWAT模型的南流江流域分布式水沙耦合模擬研究[D];廣西師范學院;2015年
8 劉科家;改進SWAT模型在銻礦區(qū)土水界面流銻污染負荷模擬中的應用研究[D];湖南科技大學;2015年
9 楊帆;基于SWAT模型的西湖流域非點源污染研究[D];浙江工業(yè)大學;2015年
10 李宗華;基于SWAT模型的漳河上游流域徑流模擬研究[D];河北工程大學;2015年
本文編號:2168553
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2168553.html