準晶反平面中心裂紋問題的研究
[Abstract]:Quasicrystal is a new solid structure and new material discovered in the last twenty years. Compared with the classical crystal elastic problem, the quasicrystal elasticity problem is much more complicated. It not only has the phonon field, but also characterizes the phase subfield of the quasi periodic arrangement of atoms, and the coupling of the phonon field phase subfield. The research on the quasi crystal and the defect problem has been given by the predecessors. Solving methods, such as complex function method, Green function method, Fourier transformation method, perturbation method and finite difference method and so on. Compared with quasicrystal dynamics problems, the study of statics is a simple multi.Westergaard stress function method and Muskhelishvili method as two kinds of complex function methods for solving linear elastic fracture mechanics problems. The second chapter is divided into two parts. The first part is divided into two parts. The first part is the plane problem of the Dugdale model. Based on the viewpoint of the Dugdale, the semi infinite crack in the finite and long body in the plane elasticity is studied by the complex function method. From the physical plane to the unit circle of the mapping plane. By solving the function equation on the mapping plane, the stress intensity factor of the solid under the external load is obtained. At the same time, the cohesive zone size is obtained by the superposition principle. When the height of the long body tends to infinity, the results and the isotropic body knot in the classical elasticity are obtained. The second part is the Dugdale model in one dimension six square quasicrystals. By using the Muskhelishvili complex function method, the analytical solution of the size of the plastic zone of the crack tip and the tear displacement at the crack tip is obtained by combining the conformal transformation method. The results are in agreement with the results given by Fan by the dislocation model. This is a quasicrystal material. In the third chapter, the dynamic response of a three-dimensional quasicrystal with a central crack is studied by the finite difference method with the help of the quasicrystal fluid dynamics model. The theoretical and numerical analysis of the crack in the phonon field, the phase subfield and the phonon phase position coupling effect is given. Then the numerical solution of stress, displacement and normalized dynamic stress intensity factor is obtained. By comparing with the crystal results, the influence of the basic field of the phonon and phase bullets is highlighted, thus revealing their important position in the dynamic deformation of the quasicrystal.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O346.1
【相似文獻】
相關期刊論文 前8條
1 張孝思 ,李維伯 ,閻步強;含有Ⅲ型中心裂紋的矩形薄板在突然位移作用下的瞬時效應[J];北京航空學院學報;1985年01期
2 鄒廣平,張正國,張學義;中心裂紋板張開位移研究[J];哈爾濱工程大學學報;1999年01期
3 吳剛,童谷生;中心裂紋板的動、靜態(tài)破損實驗研究[J];華東交通大學學報;1995年02期
4 劉瑜,李群;含中心裂紋壓電體的二維精確解[J];應用力學學報;2004年02期
5 孫宏才;高磊;徐關堯;胥銀華;;矩形板中心裂紋有限元數(shù)值分析[J];解放軍理工大學學報(自然科學版);2006年03期
6 劉鵬飛,陶偉明,郭乙木;中心裂紋板塑性功因子的計算[J];浙江大學學報(工學版);2004年08期
7 王啟智;有限寬板中心裂紋斷裂過程區(qū)的長度和位移公式[J];應用力學學報;2001年04期
8 吳剛,,陳澤光;貫穿的中心裂紋LY12板在動靜態(tài)加載條件下的斷裂實驗研究[J];實驗力學;1994年02期
相關會議論文 前10條
1 劉歡;;梅山煉鋼廠板坯中心裂紋成因分析[A];中國金屬學會第一屆青年學術年會論文集[C];2002年
2 佟新;宋滿堂;;板坯中心裂紋和三角區(qū)裂紋的成因與防止[A];品種鋼連鑄坯質(zhì)量控制技術研討會論文集[C];2008年
3 佟新;;板坯中心裂紋和三角區(qū)裂紋的成因與防止[A];第四屆中國金屬學會青年學術年會論文集[C];2008年
4 賀玉軍;陳俊良;韓建剛;;矩形坯中心裂紋的分析及防止措施[A];2012年微合金鋼連鑄裂紋控制技術研討會論文集[C];2012年
5 陳俊良;賀玉軍;韓建剛;;矩形坯中心裂紋的分析及防止措施[A];2012年全國煉鋼—連鑄生產(chǎn)技術會論文集(下)[C];2012年
6 底根順;翟永臻;吳東升;江福先;郭明建;李家征;;連鑄小方坯中心裂紋的研究與分析[A];2005中國鋼鐵年會論文集(第3卷)[C];2005年
7 底根順;吳東升;翟永臻;閆衛(wèi)兵;李家征;張明海;;連鑄小方坯中心裂紋的研究[A];第八屆全國冶金工藝理論學術會議論文專輯[C];2005年
8 張富強;李超;姜振生;孟勁松;吳世龍;王霆;王新華;張炯明;朱國森;栗偉;;連鑄板坯中心裂紋和三角區(qū)裂紋的成因及防止[A];中國金屬學會2003中國鋼鐵年會論文集(3)[C];2003年
9 牛士珍;宋波;樊一丁;閆利波;張杰;;熱軋棒材低倍中心裂紋缺陷研究[A];2006年全國冶金物理化學學術會議論文集[C];2006年
10 王艷華;田鳳紀;董志強;;板坯質(zhì)量攻關實踐[A];2006中國金屬學會青年學術年會論文集[C];2006年
相關碩士學位論文 前2條
1 侯成;混凝土中心裂紋巴西圓盤試件的斷裂行為研究[D];太原理工大學;2017年
2 喬亮萍;準晶反平面中心裂紋問題的研究[D];太原理工大學;2017年
本文編號:2164998
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2164998.html