青藏高原湖泊環(huán)境要素的多源遙感監(jiān)測及其對(duì)氣候變化響應(yīng)
[Abstract]:The Qinghai Tibet Plateau, with its complex formation mechanism, unique geographical location, climate characteristics and geological and geomorphology, has become the focus of global geoscience. There are numerous lakes in the Qinghai Tibet Plateau, which are the highest, largest and largest inland lake area of the earth and Shanghai, which are used to monitor the dynamic changes of the lake environmental factors in the Qinghai Tibet Plateau by remote sensing and GIS technology. Further analysis of the response of various factors to climate change is of great significance for promoting the study of the water cycle and energy cycle of the Qinghai Tibet Plateau and the implementation of the sustainable development strategy of the Qinghai Tibet Plateau. Mooring area, lake water level, lake ice phenology and surface environmental factors include NDVI, snow cover and albedo. Using MOD09 surface reflectance products to extract Plateau Lake area through single band Shuangfeng valley value method; use T/P, Jason_1/2, ENVISAT, ICESat altimeter data to calculate the lake level in the Qinghai Tibet Plateau Based on the principle of height measurement; use MOD10 ice and snow products, The threshold method was used to extract the ice phenology and the freezing period of lake and lake in the Qinghai Tibet Plateau. NDVI, the snow cover and albedo used MOD09 surface reflectance products, MOD10 ice and snow products, and GLASS surface shortwave albedo products to be extracted. According to different ecological geographical areas, the characteristics and laws of the various elements of different geographical regions were analyzed. The characteristics of the 1970-2015 years' temperature, precipitation and evaporation in the Qinghai Tibet Plateau are analyzed, and the responses of various factors to climate change are analyzed in combination with the monitoring data of the hydrological and environmental factors of various lakes, and the response characteristics of different ecological regions are compared and analyzed. The conclusions are as follows: (1) the overall area of the Qinghai Tibet Plateau Lake area is expanded in the 2000-2015 year. The lake change rate is between -3.92km2/a and 14.82km2/a, the area of Lake area in the northern region is the strongest, the lake area is mainly concentrated in the south area. The lake level of the Qinghai Tibet Plateau is mostly above 4000m, the lake water level is rising, the water level change rate is from -1.480m/a to 1.038m/ a, and the lake is mainly distributed in the south of the lake. The changes in Lake area and water level are basically the same in Zangnan mountain area. (2) the Qinghai Tibet Plateau Lake begins to freeze from the beginning of November to mid December, and the ice is generally melted from mid March to early May and melts from mid March to early May and completely melts from mid April to early May. The freezing period is 175 days on average. The freezing period is 130 days on average; there are obvious regional differences in the lake ice phenology. The Northern Lake area begins with early freezing period, complete melting period late, long freezing period, late freezing period in the southern Lake area, early melting period, short freezing period, the change rate of lake ice sealing period from -4.28d/a to 7.34d/a, and the great change of the lake sealing period in the Northern Lake area. (3) snow cover over the Qinghai Tibet Plateau The cover from northwest to Southeast gradually decreases, and the snow cover rate of the Qinghai Tibet Plateau is decreasing in 2001-2015 years. The NDVI value of the Qinghai Tibet Plateau is gradually increasing from northwest to Southeast, and the NDVI of Qinghai Tibet Plateau is on the rise in 2001-2015 years, the rate of change is 0.0005/a, and the albedo of the Qinghai Tibet Plateau is low in the southeast and high in the northwest of the Qinghai Tibet Plateau, 2001-2010 The albedo of the surface of the Qinghai Tibet Plateau is a small trend in the year, the rate of change is -0.0014/a, the albedo has a good correlation with the snow cover rate and NDVI, the correlation coefficient is 0.737 and -0.806. (4) Qinghai Lake, the Yang Zhuoyong error is wrong, the color forest fault area is the most sensitive to temperature and water reduction in three lakes, Yang Zhuoyong is wrong and Qinghai Lake is the smallest. The response of the Yang Zhuo fault and the area of the color forest to the unit temperature change is greater than the response to the change of unit precipitation. The lake ice phenology is mainly influenced by temperature, precipitation and wind speed. The temperature is the main influencing factor, the increase of temperature or precipitation, the shortening of the freezing period of the lake, the increase of wind speed, and the prolongation of the freezing period. (5) the snow cover of the Qinghai Tibet Plateau Rate, NDVI and albedo have a good correlation with regional temperature and precipitation, the snow cover rate is negatively correlated with temperature, and there is a positive correlation with precipitation, and NDVI is positively correlated with temperature, and the correlation with precipitation is positive and negative according to the difference of precipitation in the region, and the albedo is negatively correlated with temperature and precipitation. There is obvious spatial difference in snow cover, NDVI and albedo with regional temperature and precipitation.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P332;P343.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳志明;;青藏高原湖泊退縮及其氣候意義[J];海洋與湖沼;1986年03期
2 楊文龍;;云南高原湖泊的開發(fā)與保護(hù)[J];云南環(huán)境科學(xué);1993年01期
3 陳振樓;高原湖泊地球化學(xué)記錄早期成巖改造過程的研究(摘要)[J];地質(zhì)地球化學(xué);1995年06期
4 子皿;張煒;;高原湖泊中的心靈棲居[J];人與自然;2012年11期
5 陳志明;西藏高原湖泊的成因[J];海洋與湖沼;1981年02期
6 ;貴州省第一部研究高原湖泊環(huán)境演化的專著《草海的演化》即將公開出版[J];貴州地質(zhì);1987年01期
7 項(xiàng)仁浩;應(yīng)百才;;氣象與高原湖泊魚類生態(tài)組群和活動(dòng)規(guī)律的關(guān)系[J];中國農(nóng)業(yè)氣象;1988年02期
8 褚新洛;陳銀瑞;;云南高原湖泊魚類區(qū)系的生物學(xué)特點(diǎn)及漁業(yè)利用的途徑[J];資源開發(fā)與保護(hù);1989年01期
9 曾昭璇;介紹《內(nèi)蒙古高原湖泊與環(huán)境變遷》[J];地理學(xué)報(bào);1992年01期
10 萬瑋;肖鵬峰;馮學(xué)智;李暉;馬榮華;段洪濤;趙利民;;衛(wèi)星遙感監(jiān)測近30年來青藏高原湖泊變化[J];科學(xué)通報(bào);2014年08期
相關(guān)會(huì)議論文 前6條
1 劉文連;張壽云;吳莉;段富平;鄒國富;;高原湖泊綜合治理的理論與實(shí)踐——以云南省個(gè)舊市為例[A];中國科協(xié)2005年學(xué)術(shù)年會(huì)第38分會(huì)場、科學(xué)發(fā)展與土地資源節(jié)約和集約利用論文集[C];2005年
2 孫治旭;;云南高原湖泊農(nóng)業(yè)面源污染防治方法初探[A];首屆中國湖泊論壇論文集[C];2011年
3 楊瑞強(qiáng);景傳勇;江桂斌;;青藏高原湖泊魚體持久性有機(jī)污染物研究[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第02分會(huì)場摘要集[C];2010年
4 黃興鵬;;對(duì)治理高原湖泊客船生活污染的思考[A];2004年船舶防污染學(xué)術(shù)年會(huì)論文集[C];2004年
5 陳毅峰;何德奎;陳宜瑜;;色林錯(cuò)模式與青藏高原湖泊的可持續(xù)發(fā)展[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學(xué)術(shù)年會(huì)文集[C];2000年
6 楊麗源;李治瀅;董明華;冉崇菲;鄒寧寧;李紹蘭;;云南高原湖泊異龍湖酵母菌活性研究[A];第五屆全國微生物資源學(xué)術(shù)暨國家微生物資源平臺(tái)運(yùn)行服務(wù)研討會(huì)論文摘要集[C];2013年
相關(guān)重要報(bào)紙文章 前10條
1 吳昊;青藏高原湖泊緣何迅速擴(kuò)張?[N];中國礦業(yè)報(bào);2011年
2 記者 瞿姝寧;在法制軌道上推進(jìn)高原湖泊保護(hù)工作[N];云南日?qǐng)?bào);2014年
3 記者 馬敏;云南省成立高原湖泊國際研究中心[N];中國化工報(bào);2005年
4 劉娟;云南重點(diǎn)治理高原湖泊生態(tài)[N];西部時(shí)報(bào);2007年
5 田逢春;建設(shè)高原湖泊國際研究中心[N];云南日?qǐng)?bào);2007年
6 馮孝忠;縣領(lǐng)導(dǎo)檢查開漁節(jié)暨高原湖泊水產(chǎn)品交易會(huì)籌備工作[N];玉溪日?qǐng)?bào);2008年
7 云南省環(huán)境保護(hù)廳湖泊處副處長 張召文;云南九大高原湖泊治理的復(fù)雜性艱巨性和長期性[N];云南經(jīng)濟(jì)日?qǐng)?bào);2011年
8 記者 岳曉瓊;奮力推進(jìn)工業(yè)轉(zhuǎn)型升級(jí) 抓好高原湖泊保護(hù)治理[N];云南日?qǐng)?bào);2014年
9 記者 汪麗軍;省九大高原湖泊水污染綜合防治領(lǐng)導(dǎo)小組召開會(huì)議[N];云南日?qǐng)?bào);2006年
10 馮孝忠;江川縣委中心組舉行理論學(xué)習(xí)[N];玉溪日?qǐng)?bào);2010年
相關(guān)博士學(xué)位論文 前3條
1 楊漸;青藏高原湖泊微生物群落演替及其環(huán)境指示意義[D];中國地質(zhì)大學(xué);2015年
2 呂昌偉;內(nèi)蒙古高原湖泊碳(氮、磷、硅)的地球化學(xué)特征[D];內(nèi)蒙古大學(xué);2008年
3 王小雷;云南高原湖泊近現(xiàn)代沉積環(huán)境變化研究[D];南京師范大學(xué);2011年
相關(guān)碩士學(xué)位論文 前7條
1 陶然;高原湖泊濕地建設(shè)與運(yùn)營管理模式研究[D];華中師范大學(xué);2016年
2 王智穎;青藏高原湖泊環(huán)境要素的多源遙感監(jiān)測及其對(duì)氣候變化響應(yīng)[D];山東師范大學(xué);2017年
3 徐海濤;高原湖泊湖區(qū)可持續(xù)發(fā)展評(píng)價(jià)體系及模式研究[D];昆明理工大學(xué);2011年
4 車向紅;2000-2014年青藏高原湖泊動(dòng)態(tài)遙感監(jiān)測與分析[D];太原理工大學(xué);2015年
5 王劍芳;云南高原湖泊湖區(qū)資源保護(hù)與利用及經(jīng)濟(jì)可持續(xù)發(fā)展研究[D];昆明理工大學(xué);2005年
6 劉亞鵬;內(nèi)蒙古高原湖泊好氧不產(chǎn)氧光合細(xì)菌的分離及功能分析[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2013年
7 胡曉蘭;藏北高原湖泊現(xiàn)代沉積硅藻分布特征及生態(tài)習(xí)性研究[D];蘭州大學(xué);2014年
,本文編號(hào):2146643
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2146643.html