基于LOLA數(shù)據(jù)的月球光照模型及應(yīng)用研究
[Abstract]:Lunar surface illumination is one of the important factors in the research of lunar surface evolution. The temperature distribution of the lunar surface is the main energy source of the future human lunar surface activity, and it is also one of the important factors to decide the location of the future lunar surface construction research base. Solar radiation is one of the important factors that affect the spatial weathering of lunar surface. After long-term spatial weathering, lunar soil particles will change in microstructure and form the unique properties of lunar soil. For the interpretation of the thermal emission spectrum of lunar remote sensing exploration, the study of lunar thermal evolution model also needs the solar radiation of the lunar surface as an important analytical factor. Therefore, it is very important to construct an analytical model of the characteristics of full moon illumination and study the illumination characteristics of the whole moon and local areas. At present, the study of lunar illumination is mainly located at the polar pole of the moon, lacking the study of the moon's mid-latitude and even full-moon illumination characteristics, and the study of the lunar thermal evolution is also lack of the corresponding illumination information reference. It is one of the problems to be solved urgently in lunar scientific research to construct high-resolution full-moon light information database. The main work of this paper is as follows: 1. A geometric illumination model without considering terrain is constructed. The calculated results show that at a certain time of illumination, the solar height angle decreases from the direct point to the polar circle, and there is a time when the north and south poles are completely illuminated, and in the long time range, the total moonlight illumination ratio is between 50% and 58%. The duration of positive illumination is longer than that of moon backside, and the illumination rate in high latitude is higher than that in middle and low latitude, and it is the largest at latitude 88.5 擄, and the period of illumination rate variation is about 19 years. Based on the existing two-pole illumination model, the illumination model for the whole moon is established. Based on LOLA topographic data, a full-moon-based database is created for one year. The results show that the maximum illumination rate in one year is 91.69 and there is a permanent shadow region. The lunar sea on the front of the moon is an area with better illumination conditions at the middle and low latitudes, while the ridge with a higher topography in the polar region has a good illumination condition. Based on the improved model, the illumination characteristics of the lunar polar region and the middle and low latitudes are studied with the full consideration of the precession period. The results show that: (1) there is no permanent illumination region at the two poles of the moon, and there is a permanent shadow region. For the first time, the illumination distribution in the polar region of the half-precession period is given. In a precession period, the area of permanent shadow area at the north and south poles is 7215km2 and 1683km2, respectively. The optimum illumination rate is 91.46% and 90.98%, respectively. The longest continuous shadow time is 4.2 days and 5.0 days, and the longest continuous illumination time is 231.0 days and 203.9 days, respectively. Compared with previous studies, the maximum illumination rate in the Arctic region is increased by 1.41%, and the area of the permanent shadow area in the Antarctic region is increased by 854 km2. (2) the illumination characteristics of the middle and low latitudes are studied in detail, as represented by the Aristarchus Plateau. The illumination variation of typical landforms is analyzed. The illumination conditions of the Tycho impact crater, the Marius Hills area of the East China Sea, the Rain Sea and the Moscow Sea are briefly described, and suggestions are provided for the selection of the landing area and the location of the lunar evolution. In this paper, the distribution of illumination rate at high spatial resolution in the whole moon range is obtained, which can not only be used as the basis for the selection of landing sites for the lunar exploration plan, the formulation of scientific targets and the engineering design in the future. It also provides a reference for the future study of lunar thermal evolution.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P184.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張威巍;游雄;宋國(guó)民;;一種面向地貌因子的光照模型[J];測(cè)繪科學(xué);2009年05期
2 胡香;游雄;武玉國(guó);;體云的光照模型及其算法實(shí)現(xiàn)[J];測(cè)繪科學(xué)技術(shù)學(xué)報(bào);2006年03期
3 高永攀,黃曦;云體繪制中的光照模型綜述[J];電子科技;2005年05期
4 楊晉吉,宋萬(wàn)壽;對(duì)輻射度光照模型的改進(jìn)[J];華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1997年02期
5 李宏寧;白廷柱;曹峰梅;馬帥;許凱達(dá);楊衛(wèi)平;馮潔;;用于場(chǎng)景仿真的紅外成像模型及其有效性分析[J];紅外與毫米波學(xué)報(bào);2010年01期
6 李子巍;淮永建;付慧;;基于光作用的虛擬植物生長(zhǎng)模擬與可視化研究[J];北京林業(yè)大學(xué)學(xué)報(bào);2013年04期
7 陳蕾;鄧孺孺;彭小鵑;;TM影像與DEM的地形光照模型配準(zhǔn)法研究——以廣州市為例[J];熱帶地理;2008年03期
8 韓明峰;Phong光照模型中單位反射光線矢量的快速計(jì)算研究[J];微機(jī)發(fā)展;1999年01期
9 吳文淵;沈曉華;鄒樂(lè)君;蘇楠;孔凡立;董有浦;;遙感影像定向光照增強(qiáng)及構(gòu)造解譯[J];遙感學(xué)報(bào);2012年03期
10 畢漁民,付忠傳,楊巨慶;CIG顏色計(jì)算的算法及實(shí)現(xiàn)[J];哈爾濱師范大學(xué)自然科學(xué)學(xué)報(bào);1999年05期
相關(guān)會(huì)議論文 前1條
1 謝文軍;陳皓;劉曉平;;基于GPU的實(shí)時(shí)水面模擬方法研究[A];全國(guó)第19屆計(jì)算機(jī)技術(shù)與應(yīng)用(CACIS)學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];2008年
相關(guān)博士學(xué)位論文 前2條
1 郝平;基于圖像灰度的自由曲面重構(gòu)算法研究[D];大連理工大學(xué);2005年
2 趙輝煌;SMT焊點(diǎn)圖像處理及焊點(diǎn)三維質(zhì)量信息提取技術(shù)研究[D];西安電子科技大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 羅斯韋;基于數(shù)字星球的大規(guī)模真實(shí)感球形海洋的建模與繪制[D];電子科技大學(xué);2014年
2 董明杰;細(xì)節(jié)增強(qiáng)的混合體繪制光照模型的應(yīng)用研究[D];重慶郵電大學(xué);2016年
3 張吉棟;基于LOLA數(shù)據(jù)的月球光照模型及應(yīng)用研究[D];吉林大學(xué);2017年
4 劉凱華;生物分子可視化及其光照模型的研究[D];吉林大學(xué);2015年
5 扎西次仁;復(fù)雜場(chǎng)景中實(shí)時(shí)全局光照模型研究[D];北京郵電大學(xué);2015年
6 張彩芳;復(fù)雜場(chǎng)景真實(shí)感渲染技術(shù)研究[D];哈爾濱工程大學(xué);2008年
7 高海峰;基于球面調(diào)和理論及其相關(guān)技術(shù)的高級(jí)光照模型研究[D];合肥工業(yè)大學(xué);2011年
8 耿洪碧;3D GIS可視化中光照技術(shù)的研究與實(shí)現(xiàn)[D];沈陽(yáng)工業(yè)大學(xué);2011年
9 趙鐵梅;虛擬場(chǎng)景繪制加速技術(shù)研究及應(yīng)用[D];西安電子科技大學(xué);2012年
10 周偉峰;基于單目多幅圖像的三維曲面重構(gòu)研究[D];大連理工大學(xué);2002年
,本文編號(hào):2140043
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2140043.html