輪胎復(fù)雜花紋溝的空氣動(dòng)力學(xué)仿真研究
本文選題:輪胎 + 復(fù)雜花紋溝。 參考:《東華大學(xué)》2017年碩士論文
【摘要】:輪胎噪聲是汽車噪聲的主要組成部分,當(dāng)汽車高速行駛時(shí),輪胎噪聲占汽車噪聲的比例高達(dá)80%。針對(duì)輪胎噪聲問題,歐盟出臺(tái)了2009/1222/EC輪胎標(biāo)簽法規(guī),規(guī)定各種型號(hào)輪胎的具體噪聲限值,這是我國(guó)輪胎出口業(yè)面臨的嚴(yán)峻挑戰(zhàn),而要解決技術(shù)性貿(mào)易壁壘,就必須克服技術(shù)瓶頸。泵氣噪聲是輪胎噪聲的主要貢獻(xiàn)源,而合理的花紋溝結(jié)構(gòu)設(shè)計(jì)是減少泵氣噪聲的有效方法,越來越多的研究者意識(shí)到胎面花紋對(duì)輪胎降噪的重要性。目前由于實(shí)驗(yàn)研究泵氣噪聲的難度較大,而有限元仿真技術(shù)則發(fā)展迅速,因此研究復(fù)雜花紋溝空氣動(dòng)力學(xué)數(shù)值模擬方法及其應(yīng)用成為目前學(xué)術(shù)界和工程界的重要課題。本文以輪胎復(fù)雜花紋溝為研究對(duì)象,基于有限元軟件ABAQUS對(duì)帶有復(fù)雜花紋溝的12.00R20載重子午線輪胎進(jìn)行瞬態(tài)滾動(dòng)分析,利用Python編程語言編寫程序處理結(jié)果,得到不同速度工況下花紋溝泵氣過程胎面體表面下壓量隨時(shí)間的變化曲線,并以此作為空氣動(dòng)力學(xué)仿真計(jì)算的邊界條件;基于ANSYS Workbench仿真平臺(tái)使用大渦模擬和動(dòng)網(wǎng)格技術(shù),通過System Coupling模塊進(jìn)行雙向流固耦合模擬,提出了一套復(fù)雜花紋溝空氣動(dòng)力學(xué)仿真方法,通過仿真分析了復(fù)雜花紋溝的流場(chǎng)特征和渦流的運(yùn)動(dòng)規(guī)律,并對(duì)比有無小溝槽存在時(shí)的流場(chǎng)狀態(tài);最后基于流場(chǎng)計(jì)算結(jié)果,采用FW-H聲學(xué)計(jì)算法建立噪聲預(yù)測(cè)方法,并利用方法探討花紋溝結(jié)構(gòu)對(duì)泵氣噪聲的影響規(guī)律。通過本文建立的方法對(duì)復(fù)雜花紋溝進(jìn)行仿真計(jì)算,得到了花紋溝泵氣過程的流場(chǎng)狀況,分析結(jié)果表明:花紋溝槽出口處流場(chǎng)復(fù)雜,氣體進(jìn)入外部流場(chǎng)后,在出口兩端花紋塊壁面開始形成渦流,渦流在流場(chǎng)中周期性的形成并向外擴(kuò)散,這一過程引起流場(chǎng)壓力波動(dòng),是泵氣噪聲產(chǎn)生的重要原因;另一方面,小溝槽起到了分流作用,主溝槽出口流速和外流場(chǎng)渦流強(qiáng)度均比無小溝槽的復(fù)雜花紋溝小,驗(yàn)證了復(fù)雜花紋溝槽中小溝槽設(shè)計(jì)的合理性;诹鲌(chǎng)結(jié)果對(duì)復(fù)雜花紋溝的泵氣噪聲進(jìn)行了預(yù)測(cè),分析結(jié)果表明:泵氣噪聲屬于高頻噪聲;花紋溝狀態(tài)改變瞬間的聲壓變化最大;小溝槽存在的復(fù)雜花紋溝泵氣噪聲更小;花紋溝的寬度、高度的增大都會(huì)使泵氣噪聲增加,而壁面拔模角的增大會(huì)使花紋溝的泵氣噪聲減小;其中花紋溝高度對(duì)泵氣噪聲的影響最大,寬度最小,拔模角次之。本文通過研究為輪胎花紋的結(jié)構(gòu)設(shè)計(jì)提供數(shù)值模擬方法和理論參考,為完善輪胎低噪聲性能評(píng)價(jià)體系提供研究工作基礎(chǔ),為提升我國(guó)輪胎產(chǎn)業(yè)的研發(fā)效率與輪胎質(zhì)量等級(jí)提供技術(shù)支持。
[Abstract]:Tire noise is the main component of automobile noise. When the vehicle is driving at high speed, the proportion of tire noise to vehicle noise is as high as 80%. Aiming at the problem of tire noise, EU issued the 2009 / 1222 / EC tire label regulation, which stipulates the specific noise limit value of various types of tyres. This is a severe challenge faced by the tire export industry of our country. In order to solve the technical barriers to trade, we must overcome the technical bottleneck. Pump noise is the main contribution of tire noise, and reasonable design of pattern groove structure is an effective method to reduce pump air noise. More and more researchers realize the importance of tread pattern to tire noise reduction. At present, it is difficult to study pump air noise by experiment, and the finite element simulation technology is developing rapidly. Therefore, the research on aerodynamic numerical simulation method of complex pattern groove and its application has become an important subject in academic and engineering circles. Based on the finite element software Abaqus, the transient rolling analysis of 12.00R20 truck radial tire with complex pattern groove is carried out in this paper, and the processing results are programmed by Python programming language. The variation curve of pressure on the surface of tread surface under different velocity conditions is obtained, which is taken as the boundary condition of aerodynamics simulation, and the large eddy simulation and moving grid technology are used based on ANSYS Workbench simulation platform. A set of aerodynamics simulation method for complex pattern groove is proposed by system coupling module, and the characteristics of flow field and the motion law of eddy current are analyzed by simulation. Finally, based on the flow field calculation results, the noise prediction method is established by using FW-H acoustical calculation method, and the influence law of pattern groove structure on pump air noise is discussed by using the method. Through the simulation calculation of the complex pattern groove by the method established in this paper, the flow field of the pattern groove pump gas process is obtained. The analysis results show that the flow field at the outlet of the pattern groove is complicated and the gas enters the external flow field. On the other hand, the vortex is formed periodically in the flow field and diffuses outwards. This process causes the pressure fluctuation of the flow field, which is the important cause of the pump air noise. On the other hand, the small grooves play the role of shunt. The flow velocity at the outlet of the main groove and the eddy current intensity of the outflow field are smaller than those of the complex pattern groove without a small groove, which verifies the rationality of the design of the small groove with the complex pattern groove. Based on the flow field results, the pump air noise of complex pattern groove is predicted. The results show that the pump air noise belongs to high frequency noise, the change of sound pressure in the moment of change of pattern groove state is the biggest, the air noise of complex pattern groove pump with small groove is even less. The increase of the width and height of the pattern groove will increase the pump air noise, while the increase of the wall drawing angle will reduce the pump air noise of the pattern groove, in which the height of the pattern groove has the greatest influence on the pump air noise, the width is the smallest, and the drawing angle is the second. This paper provides the numerical simulation method and theoretical reference for the tire pattern structure design, and provides the research foundation for improving the tire low noise performance evaluation system. Provide technical support for improving R & D efficiency and tire quality grade of tire industry in China.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U463.341;O35
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 王麗雪;李子然;夏源明;;輪胎泵浦噪聲的數(shù)值模擬[J];中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào);2014年06期
相關(guān)重要報(bào)紙文章 前2條
1 黃震;汽車的輪胎(下)[N];當(dāng)代汽車報(bào);2006年
2 ;如何避免爆胎事故[N];人民日?qǐng)?bào);2004年
相關(guān)碩士學(xué)位論文 前10條
1 于清;現(xiàn)場(chǎng)輪胎痕跡花紋檢索算法研究[D];大連海事大學(xué);2015年
2 周銳;花紋塊剛度特性及其對(duì)輪胎力學(xué)性能影響規(guī)律研究[D];哈爾濱工業(yè)大學(xué);2015年
3 周博;輪胎花紋溝流體動(dòng)力學(xué)研究[D];東華大學(xué);2016年
4 鄒澤華;輪胎復(fù)雜花紋溝的空氣動(dòng)力學(xué)仿真研究[D];東華大學(xué);2017年
5 孫偉;輪胎模具標(biāo)準(zhǔn)件CAD及花紋塊CAM技術(shù)研究[D];青島科技大學(xué);2009年
6 鄭小剛;轎車子午線輪胎花紋噪聲仿真系統(tǒng)研究[D];清華大學(xué);2013年
7 張浩;全鋼子午線輪胎活絡(luò)模具花紋塊電加工工藝研究及計(jì)算機(jī)輔助工程[D];青島科技大學(xué);2010年
8 白蘇誠(chéng);基于語義的輪胎3D花紋CAD系統(tǒng)設(shè)計(jì)[D];合肥工業(yè)大學(xué);2015年
9 張萍;基于UG NX子午胎活絡(luò)模CAD系統(tǒng)研究與開發(fā)[D];山東理工大學(xué);2009年
10 胡萌;輪胎三維花紋CAD的研究[D];華中科技大學(xué);2008年
,本文編號(hào):2116859
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2116859.html