國產(chǎn)機載LiDAR點云與航空影像融合獲取高精度DEM技術(shù)研究
本文選題:國產(chǎn)LiDAR + 系統(tǒng)檢校; 參考:《昆明理工大學》2017年碩士論文
【摘要】:機載激光雷達作為一種快速、實時、高效的獲取地理空間信息的新型技術(shù),對傳統(tǒng)測繪事業(yè)的發(fā)展起到了巨大的推動作用。本文圍繞著國產(chǎn)機載LiDAR系統(tǒng)AP-3500的定位模型建立,集成誤差檢校,獲取的點云與影像融合等方面進行研究,以提高點云定位精度,并通過實驗對所獲取點云的精度進行驗證。本文完成的主要工作如下:(1)系統(tǒng)的集成研究及誤差修正模型建立。對系統(tǒng)的硬件設(shè)備組成及工作原理做了簡要介紹,并闡述了慣性導(dǎo)航系統(tǒng)的定位原理與LiDAR點云的測量原理,同時,為了得到三維激光腳點精確的三維坐標,在系統(tǒng)各部件之間建立相對獨立的坐標系,通過研究建立起了消除誤差的數(shù)學模型,找到了各坐標系間的位置與角度偏差。(2)集成誤差檢校。建立起了解求單相機的畸變系數(shù)與內(nèi)方外元素的檢校方式,并完成了雙拼相機的平臺檢校,且通過對激光掃描儀的測距測角誤差進行檢校,建立起了掃描儀的檢校方案,同時完成了 POS與LiDAR系統(tǒng)及相機系統(tǒng)的集成誤差檢校,構(gòu)建了一整套誤差集成檢校方法。(3)數(shù)據(jù)處理研究。通過實驗,得到了對影像輻射信息損失相對最少,變形相對最小的影像處理流程與方法,且借助影像信息的輔助對點云數(shù)據(jù)進行處理,并成功將兩種數(shù)據(jù)進行融合,使融合后的點云即擁有強度,回波次數(shù),反射強度,三維坐標信息等原有信息,還具備了影像光譜信息,隨后借助這些特征信息對點云進行過濾與分類處理,利用濾波所得的地面點構(gòu)建地面三角網(wǎng),生成高精度DEM。(4)DEM精度驗證與分析。在國家測繪地理信息局相關(guān)科研項目的支撐下,在河南省平頂山市衛(wèi)東區(qū)某地進行飛行試驗,利用同機飛行獲取的影像與點云進行融合操作,并利用融合后的綜合信息進行過濾與分類處理,適當?shù)募右允止じ深A(yù)后,利用處理所得地面點構(gòu)建DEM,并利用在實驗區(qū)放置的正方形標靶的實測中心與擬合中心的坐標差值來驗證點云的平面與高程精度,最后使用檢查點檢測法對DEM進行精度評定。
[Abstract]:Airborne lidar, as a new technology to obtain geospatial information quickly, real-time and efficiently, has played a great role in promoting the development of traditional surveying and mapping. In order to improve the accuracy of point cloud location, this paper focuses on the establishment of the localization model of the domestic airborne LiDAR system AP-3500, the integration error checking, the fusion of the obtained point cloud and the image, and verifies the accuracy of the obtained point cloud through experiments. The main work of this paper is as follows: 1) Integration of the system and establishment of error correction model. The hardware components and working principle of the system are briefly introduced, and the positioning principle of inertial navigation system and the measuring principle of LiDAR point cloud are expounded. At the same time, in order to obtain the accurate 3D coordinate of 3D laser foot-point, A relatively independent coordinate system is established among the various parts of the system. A mathematical model for eliminating errors is established and the position and angle deviation between the coordinate systems is found. In this paper, the distortion coefficient of single camera and the checking mode of inner and outer elements are established, and the platform check of double camera is completed, and the calibration scheme of scanner is established by checking the ranging and angle error of laser scanner. At the same time, the integrated error checking of POS, LiDAR system and camera system is completed, and a set of error integrated calibration method. Through experiments, the image processing flow and method with the least loss of image radiation information and the smallest deformation are obtained, and the point cloud data is processed with the aid of image information, and the two kinds of data are fused successfully. The fused point cloud has the original information, such as intensity, echo times, reflection intensity, 3D coordinate information and so on. It also has the spectral information of image, and then filters and classifies the point cloud with the help of these characteristic information. The ground triangulation network is constructed by using the ground points obtained by filtering, and high precision DEM.(4)DEM accuracy verification and analysis are generated. Supported by relevant scientific research projects of the State Bureau of surveying and Mapping Geographic Information, a flight test was conducted in the Weidong District of Pingdingshan City, Henan Province. The image obtained from the same flight was fused with the point cloud. The integrated information was filtered and classified, and the appropriate manual intervention was carried out. DEM is constructed by using the treated ground points, and the coordinate difference between the measured center and the fitting center of the square target placed in the experimental area is used to verify the plane and elevation accuracy of the point cloud. Finally, the accuracy of DEM is evaluated by checkpoint detection method.
【學位授予單位】:昆明理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P23
【參考文獻】
相關(guān)期刊論文 前10條
1 柏春嵐;;GNSS/INS組合導(dǎo)航在航空攝影中的應(yīng)用研究[J];北京測繪;2016年06期
2 牛小驥;班亞龍;張?zhí)嵘?劉經(jīng)南;;GNSS/INS深組合技術(shù)研究進展與展望[J];航空學報;2016年10期
3 甘雨;;GNSS/INS組合系統(tǒng)模型精化及載波相位定位測姿[J];測繪學報;2015年11期
4 張聰慧;邱崧;;GNSS/INS緊組合定位技術(shù)簡介[J];科技展望;2015年31期
5 汪捷;徐冠楠;;基于GNSS動動差分相對定位方法的研究與探討[J];現(xiàn)代導(dǎo)航;2015年03期
6 胡耀鋒;張志媛;林鴻;;利用機載LiDAR測繪大比例尺數(shù)字地形圖的可行性研究[J];測繪通報;2015年05期
7 劉田龍;常虹;謝劭峰;左建章;;國產(chǎn)機載LiDAR系統(tǒng)集成誤差檢校方法的比較[J];地理空間信息;2015年02期
8 楊濤;趙子陽;李醒飛;蔡玲;;多星座GNSS/INS緊耦合方法[J];中國慣性技術(shù)學報;2015年01期
9 趙慧珍;程英蕾;屈亞運;;基于最小二乘法的激光雷達數(shù)據(jù)濾波方法[J];科學技術(shù)與工程;2014年33期
10 彭軍;何群;孫豐甲;郭建麟;李娜娜;;INS/GNSS組合導(dǎo)航系統(tǒng)校準方法[J];計測技術(shù);2014年04期
相關(guān)博士學位論文 前2條
1 張良;基于多時相機載LiDAR數(shù)據(jù)的三維變化檢測關(guān)鍵技術(shù)研究[D];武漢大學;2014年
2 李軍杰;SWDC-4A數(shù)字航測系統(tǒng)的關(guān)鍵技術(shù)與應(yīng)用[D];首都師范大學;2013年
相關(guān)碩士學位論文 前10條
1 李國柱;基于激光雷達技術(shù)的城市三維快速建模及應(yīng)用研究[D];昆明理工大學;2009年
2 朱會平;機載激光雷達測量系統(tǒng)檢校與精度評價[D];河南理工大學;2011年
3 沈浩;無人機MIMU/GPS組合導(dǎo)航系統(tǒng)研究[D];哈爾濱工程大學;2012年
4 尚大帥;機載LiDAR點云數(shù)據(jù)濾波與分類技術(shù)研究[D];解放軍信息工程大學;2012年
5 李志杰;國產(chǎn)機載LiDAR技術(shù)及其在電力巡線中的應(yīng)用[D];昆明理工大學;2013年
6 徐軍利;GIS/GPS/GSM在車輛監(jiān)控系統(tǒng)中的應(yīng)用研究[D];武漢理工大學;2002年
7 徐盛友;激光陀螺捷聯(lián)慣導(dǎo)系統(tǒng)數(shù)據(jù)采集的設(shè)計與實現(xiàn)[D];重慶大學;2006年
8 李振;慣性導(dǎo)航定位系統(tǒng)數(shù)據(jù)處理技術(shù)的研究[D];沈陽工業(yè)大學;2007年
9 姬振龍;低成本組合導(dǎo)航系統(tǒng)研究[D];上海交通大學;2010年
10 李崇瑞;DLG輔助的機載LiDAR點云數(shù)據(jù)濾波研究[D];太原理工大學;2015年
,本文編號:1917586
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1917586.html