天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于軌跡數(shù)據(jù)挖掘的短時出租車區(qū)域分布預測研究

發(fā)布時間:2018-05-16 00:19

  本文選題:出租車 + 軌跡數(shù)據(jù)挖掘; 參考:《吉林大學》2017年碩士論文


【摘要】:出租車是城市公共交通系統(tǒng)中一個不可或缺的重要組成部分,為市民提供了一種方便快捷的出行方式。近年來,隨著移動互聯(lián)網(wǎng)的發(fā)展,類似于滴滴這樣的網(wǎng)約車服務平臺興起,一方面在為市民提供了一種更加高效便捷的出行方式選擇的基礎上,另一方面也對傳統(tǒng)的出租車運營模式造成了一定程度的沖擊,傳統(tǒng)的出租車行業(yè)面臨較大的競爭壓力。出租車運營公司迫切需要提升運營效率提高競爭力,抗衡網(wǎng)約車所造成的沖擊。其中有效的空載出租車運力調(diào)度是降低出租車空載率,提升運營效率的關鍵,而科學合理的空載出租車調(diào)度基于對未來一段時間內(nèi)不同區(qū)域打車需求情況以及出租車運營公司旗下所有出租車在不同區(qū)域的分布情況的精確預測,打車需求遠大于出租車供應的區(qū)域是出租車調(diào)度的目的地,通過將未來會出現(xiàn)在供大于求區(qū)域的空載出租車調(diào)度到未來出租車供小于求的區(qū)域,從而達到出租車供需平衡的狀態(tài)是空載出租車調(diào)度所追求的目標。本文主要關注于對未來一段時間出租車的區(qū)域分布情況進行預測的研究。與打車請求所具有的明顯的隨機性不同,未來一段時間內(nèi)出租車在不同區(qū)域的分布情況與當前出租車在各個區(qū)域的分布情況高度相關,因此對出租車區(qū)域分布進行預測主要利用當前出租車的區(qū)域分布信息。通過挖掘歷史出租車軌跡數(shù)據(jù),本文提出了多個不同類型的短時出租車區(qū)域分布預測算法,并且通過模擬預測實驗,驗證對比了各個算法的預測效果,三種預測算法分別是基于概率統(tǒng)計的馬爾可夫過程預測算法,屬于無監(jiān)督學習的矩陣分解算法,屬于監(jiān)督學習的GBRT預測算法等。馬爾可夫過程是隨機過程的一種,其最重要的性質(zhì)是馬爾可夫性即無后效性,在短時出租車區(qū)域分布預測問題中,基于馬爾可夫過程的預測算法通過將實時出租車區(qū)域分布抽象為向量形式,然后與描述一天中此時段出租車在各個區(qū)域之間進行轉移的區(qū)域轉移概率矩陣進行矩陣乘法運算,從而獲取一段時間后出租車在各個區(qū)域內(nèi)的分布預測。矩陣分解是隱語義模型算法的核心步驟,主要應用于推薦系統(tǒng)領域,本文中將矩陣分解算法引入出租車區(qū)域分布預測問題中,并且基于出租車區(qū)域分布的時空特性對基本的矩陣分解算法應用進行了改造,使其可以有效的適用于出租車區(qū)域分布預測問題。GBRT算法是一種典型的監(jiān)督機器學習算法,具有泛化能力強,預測精確度高的特性,本文中通過為每一個區(qū)域單獨訓練一個回歸器的方法來預測每個區(qū)域內(nèi)一段時間后會出現(xiàn)的出租車數(shù)目。為了有效的利用出租車運營公司多年來所積攢的海量軌跡數(shù)據(jù),本文中利用軌跡數(shù)據(jù)挖掘技術對原始的軌跡數(shù)據(jù)進行了預處理,從原始的軌跡數(shù)據(jù)中抽取出了與出租車時空分布相關的信息,并且將其組織為Tensor形式。在隨后的預測算法學習與模擬預測階段,可以方便的將Tensor中保存的相關信息轉換為適合學習算法進行訓練與模擬預測的形式。
[Abstract]:Taxi is an indispensable and important part of the urban public transportation system, which provides a convenient and quick way for the citizens to travel. In recent years, with the development of mobile Internet, the network of car service platform, which is similar to drip, has been rising. On the one hand, it provides a more efficient and convenient way for the citizens to choose the way to travel. On the other hand, on the other hand, the traditional taxi operation mode has caused a certain degree of impact, the traditional taxi industry is facing greater competition pressure. The taxi operation company urgently needs to improve the operation efficiency to improve the competitiveness and counterbalance the impact caused by the network about the car. Car rental rate is the key to improve the operation efficiency, and the scientific and reasonable taxi dispatch is based on the demand for the taxi in different areas in the next period of time and the accurate prediction of the distribution of all taxis under the taxi operation company in different areas. The taxi demand is far greater than the taxi supply area is the taxi regulation. In order to achieve a taxi supply and demand balance, the aim of the taxi dispatching is to dispatch the future taxi to the area where the taxi supply is less than the demand in the future. This paper mainly focuses on the prediction of the regional distribution of the taxi in the future period. The distribution of taxis in different regions is highly related to the distribution of taxis in different regions in the next period of time. Therefore, the regional distribution of taxis is predicted mainly by the regional distribution information of current taxis. Through mining historical taxis In this paper, a number of different types of short-term taxi regional distribution prediction algorithms are proposed, and the prediction results of each algorithm are compared by simulation prediction experiments. The three prediction algorithms are Markov process forecasting based on probability statistics, which belong to the unsupervised learning matrix decomposition algorithm and belong to the supervision. The GBRT prediction algorithm for learning. The Markov process is one of the random processes. The most important nature of the process is that the Markov nature is no aftereffect. In the short time taxi regional distribution prediction problem, the prediction algorithm based on the Markov process is abstracted into the vector form by the real-time taxi area distribution, and then it is described in the middle of the day. In order to obtain the distribution prediction of taxis in various regions after a period of time, a taxi can obtain the distribution prediction of the taxis in each region. Matrix decomposition is the core step of the algorithm of the semantic model of the hidden language, which is mainly used in the field of recommendation system. In this paper, the matrix decomposition algorithm is introduced to rent. In the vehicle regional distribution prediction problem, and based on the spatial and temporal characteristics of the taxis distribution, the application of the basic matrix decomposition algorithm is reformed, so that it can be effectively applied to the taxi regional distribution prediction problem.GBRT algorithm is a typical supervised machine learning algorithm, which has the characteristics of strong generalization ability and high prediction accuracy. In this paper, the number of taxis that will appear after a period of time in each region is predicted by training a regression device separately for each region. In order to effectively use the massive trajectory data accumulated by the taxi operators for many years, the trajectory data mining technique is used to preprocess the original trajectory data in this paper. The information related to the space-time distribution of taxis is extracted from the original trajectory data, and it is organized into a Tensor form. In the subsequent prediction algorithm learning and simulation prediction phase, the related information stored in the Tensor can be easily converted into the form of training and simulation prediction suitable for learning algorithms.

【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F570;O211.62

【參考文獻】

相關期刊論文 前10條

1 鄭宇;;城市計算概述[J];武漢大學學報(信息科學版);2015年01期

2 陸鋒;劉康;陳潔;;大數(shù)據(jù)時代的人類移動性研究[J];地球信息科學學報;2014年05期

3 李婷;裴韜;袁燁城;宋辭;王維一;楊格格;;人類活動軌跡的分類、模式和應用研究綜述[J];地理科學進展;2014年07期

4 陸鋒;張恒才;;大數(shù)據(jù)與廣義GIS[J];武漢大學學報(信息科學版);2014年06期

5 許寧;尹凌;胡金星;;從大規(guī)模短期規(guī)則采樣的手機定位數(shù)據(jù)中識別居民職住地[J];武漢大學學報(信息科學版);2014年06期

6 龍瀛;張宇;崔承印;;利用公交刷卡數(shù)據(jù)分析北京職住關系和通勤出行[J];地理學報;2012年10期

7 劉良旭;樂嘉錦;喬少杰;宋加濤;;基于軌跡點局部異常度的異常點檢測算法[J];計算機學報;2011年10期

8 袁冠;夏士雄;張磊;周勇;;基于結構相似度的軌跡聚類算法[J];通信學報;2011年09期

9 劉瑜;肖昱;高松;康朝貴;王瑤莉;;基于位置感知設備的人類移動研究綜述[J];地理與地理信息科學;2011年04期

10 周傲英;楊彬;金澈清;馬強;;基于位置的服務:架構與進展[J];計算機學報;2011年07期

相關博士學位論文 前2條

1 呂明琪;基于軌跡數(shù)據(jù)挖掘的語義化位置感知計算研究[D];浙江大學;2012年

2 張治華;基于GPS軌跡的出行信息提取研究[D];華東師范大學;2010年

,

本文編號:1894592

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1894592.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶b991f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com