科爾沁沙地梯級(jí)生態(tài)系統(tǒng)蒸散發(fā)規(guī)律及模型模擬研究
本文選題:科爾沁沙地 + 梯級(jí)生態(tài)系統(tǒng); 參考:《內(nèi)蒙古農(nóng)業(yè)大學(xué)》2017年碩士論文
【摘要】:本文以科爾沁流動(dòng)沙丘A4渦度數(shù)據(jù)為例,采用二次坐標(biāo)旋轉(zhuǎn)法(DR)和平面擬合法(PF)對(duì)水熱通量、數(shù)據(jù)質(zhì)量對(duì)比分析;選取科爾沁沙地梯級(jí)生態(tài)系統(tǒng)(流動(dòng)沙丘-玉米地-草甸地-固定沙丘-半固定沙丘),結(jié)合2015年、2016年渦度相關(guān)系統(tǒng)實(shí)測(cè)的蒸散量,利用Shuttleworth-Wallace(S-W)模型對(duì)各生態(tài)系統(tǒng)蒸散量模擬分析,并進(jìn)行適用性評(píng)價(jià),得到的主要結(jié)論如下:(1)地形平緩區(qū)(180°-330°)垂直風(fēng)速大于0,β在1.6773°左右;地形陡峭區(qū)(330°-180°)垂直風(fēng)速小于0,β在-1.6486°左右;二次坐標(biāo)旋轉(zhuǎn)法和平面擬合法對(duì)潛熱通量影響很大,分別增加17%和減小15%,二次坐標(biāo)旋轉(zhuǎn)法訂正前后水熱通量相關(guān)性均高于平面擬合法;二次坐標(biāo)旋轉(zhuǎn)法和平面擬合法訂正后的數(shù)據(jù)分別有89.6%和89.3%通過湍流發(fā)展的充分性檢驗(yàn);摩擦風(fēng)速由二次坐標(biāo)旋轉(zhuǎn)法訂正前后的相關(guān)性高于平面擬合法;能量閉合率分別提高了 3.47%和2.78%;整個(gè)生長(zhǎng)季中,6、8月訂正后渦度數(shù)據(jù)質(zhì)量有較好的提高。因此,二次坐標(biāo)旋轉(zhuǎn)法更適用于地面起伏較大的流動(dòng)沙丘。(2)除流動(dòng)沙丘外,各生態(tài)系統(tǒng)蒸散量呈明顯的"鐘型"分布,且隨著夏季到秋季的變化,蒸散發(fā)的增強(qiáng)和減弱時(shí)間分別由6:00推遲到7:00、由19:00提前到18:00,增加減少的速率大小為玉米地草甸地固定沙丘、半固定沙丘流動(dòng)沙丘;各站點(diǎn)植被"午休"現(xiàn)象導(dǎo)致蒸散量的減小量大小為固定沙丘、半固定沙丘草甸地玉米地,流動(dòng)沙丘沒有明顯的植被"午休"現(xiàn)象。整體來說,蒸散量大小為:玉米地草甸地固定沙丘、半固定沙丘流動(dòng)沙丘;降雨對(duì)各生態(tài)系統(tǒng)影響程度不同,在植被旺盛期為玉米地草甸地流動(dòng)沙丘,在植被枯萎期為半固定沙丘草甸地固定沙丘流動(dòng)沙丘。影響各生態(tài)系統(tǒng)實(shí)際蒸散發(fā)最顯著的氣象因素是Rn,不顯著因素是θ。(3)日尺度上,S-W模型在玉米地的適用性高,流動(dòng)沙丘則最低;且日尺度模擬精度低于小時(shí)尺度;小時(shí)尺度上,蒸散量模擬精度受天氣影響,晴天高于陰、雨天,各生態(tài)系統(tǒng)適用性由高到低為:玉米地、草甸地、半固定沙丘、流動(dòng)沙丘、固定沙丘;影響S-W模型最大的阻力和氣象參數(shù)分別是冠層氣孔阻力和凈輻射、葉面積指數(shù),最小的分別是冠層邊界層阻力和土壤含水率;受阻力和氣象參數(shù)影響最大的生態(tài)系統(tǒng)分別是草甸地和固定沙丘,最小的分別是半固定沙丘和草甸地。綜上所述,S-W模型在科爾沁沙地中玉米地和草甸地的適用性更好。
[Abstract]:Taking the A4 vorticity data of Horqin flow dune as an example, the water and heat flux and data quality are compared and analyzed by using the quadratic coordinate rotation method (DRD) and the plane fitting method (PFN). The cascade ecosystem (mobile dunes, corn fields, meadow land, fixed dunes and semi-fixed dunes) in Horqin sandy land was selected. Combined with the measured evapotranspiration of the vorticity correlation system in 2015 and 2016, the evapotranspiration of each ecosystem was simulated by Shuttleworth-Wallace-S-Wmodel. The main conclusions are as follows: 1) the vertical wind speed is more than 0, 尾 is about 1.6773 擄, the vertical wind speed is less than 0, 尾 is about -1.6486 擄, and the vertical wind speed is less than 0 and 尾 is about -1.6486 擄. The quadratic coordinate rotation method and the plane fitting method have great influence on the latent heat flux, which increases by 17% and decreases by 15%, respectively. The correlation of the water and heat flux before and after revision by the quadratic coordinate rotation method is higher than that by the plane fitting method. 89.6% and 89.3% of the data obtained by the quadratic coordinate rotation method and the plane fitting method have passed the sufficient test of turbulence development, and the correlation of the friction wind speed before and after revision by the quadratic coordinate rotation method is higher than that by the plane fitting method. The energy closure rate increased by 3.47% and 2.78%, respectively, and the quality of vorticity data was improved better after the revised vorticity data in the middle of the growing season in June and August. Therefore, the quadratic coordinate rotation method is more suitable for mobile sand dunes with large surface undulation. Except for mobile sand dunes, the evapotranspiration of each ecosystem shows an obvious "bell" distribution, and changes with the summer to autumn. The increasing and decreasing time of evapotranspiration was delayed from 6:00 to 7: 00 and from 19:00 to 18: 00, respectively. The increasing and decreasing rate was fixed sand dunes in cornfield meadow and moving dunes in semi-fixed sand dunes. The reduction of evapotranspiration was caused by the phenomenon of "lunch break" in the vegetation of each station, the amount of evapotranspiration was reduced to fixed sand dunes, and there was no obvious phenomenon of vegetation "lunch break" in moving dunes in maize fields of semi-fixed sand dunes in meadow land. As a whole, the amount of evapotranspiration is as follows: fixed sand dunes and semi-fixed sand dunes in cornfield meadow; rainfall has different effects on each ecosystem, and in the period of vegetation exuberance, it is moving sand dunes in maize meadow land. In the period of vegetation withering, the moving dunes were fixed in semi-fixed dunes meadow. The most significant meteorological factor affecting the actual evapotranspiration of each ecosystem is Rn, and the non-significant factor is 胃. 3) the applicability of the model is high in cornfields on a daily scale and the lowest in moving dunes, and the accuracy of daily scale simulation is lower than that of a small scale, and the accuracy of daily scale simulation is lower than that of a small scale. The simulation accuracy of evapotranspiration is affected by weather. The applicability of each ecosystem from high to low is: corn field, meadow land, semi-fixed sand dune, mobile sand dune, fixed sand dune; The maximum resistance and meteorological parameters of S-W model were canopy stomatal resistance and net radiation, leaf area index, canopy boundary layer resistance and soil moisture content, respectively. The ecosystems most affected by resistance and meteorological parameters were meadow land and fixed sand dune, and semi-fixed sand dunes and meadow land were the smallest. In conclusion, the S-W model is more suitable for cornfield and meadow in Horqin sandy land.
【學(xué)位授予單位】:內(nèi)蒙古農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:Q14
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 文冶強(qiáng);楊健;尚松浩;;基于雙作物系數(shù)法的干旱區(qū)覆膜農(nóng)田耗水及水量平衡分析[J];農(nóng)業(yè)工程學(xué)報(bào);2017年01期
2 吳戈男;胡中民;李勝功;鄭涵;朱先進(jìn);孫曉敏;于貴瑞;李景保;;SWH雙源蒸散模型模擬效果驗(yàn)證及不確定性分析[J];地理學(xué)報(bào);2016年11期
3 張曉艷;褚建民;孟平;鄭寧;姚增旺;王鶴松;姜生秀;;環(huán)境因子對(duì)民勤綠洲荒漠過渡帶梭梭人工林蒸散的影響[J];應(yīng)用生態(tài)學(xué)報(bào);2016年08期
4 王婧;劉廷璽;雷慧閩;張圣微;段利民;吳堯;;基于渦度相關(guān)的半干旱區(qū)沙丘-草甸水熱通量對(duì)比分析[J];干旱區(qū)研究;2016年03期
5 董軍;岳寧;黨慧慧;王剛;魏國(guó)孝;;應(yīng)用修訂的Shuttleworth-Wallace模型對(duì)半干旱區(qū)覆膜玉米蒸散的研究[J];中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào);2016年05期
6 高冠龍;張小由;魚騰飛;趙虹;邱燕;李玉春;;Shuttleworth-Wallace雙源蒸散發(fā)模型阻力參數(shù)的確定[J];冰川凍土;2016年01期
7 楊秀芹;王磊;王凱;;基于MOD16產(chǎn)品的淮河流域?qū)嶋H蒸散發(fā)時(shí)空分布[J];冰川凍土;2015年05期
8 鄭寧;張勁松;孟平;李巖泉;黃輝;;坐標(biāo)旋轉(zhuǎn)訂正對(duì)農(nóng)田林網(wǎng)水熱通量測(cè)算精度的影響[J];林業(yè)科學(xué)研究;2015年04期
9 張琨;韓拓;朱高峰;白巖;馬婷;;西北內(nèi)陸河流域典型生態(tài)系統(tǒng)通量數(shù)據(jù)空間代表性研究[J];干旱區(qū)地理;2015年04期
10 李璐;李俊;同小娟;楊永民;于強(qiáng);;不同冠層阻力公式在玉米田蒸散模擬中的應(yīng)用[J];中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào);2015年08期
,本文編號(hào):1839551
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1839551.html