不同尺度Duffing系統(tǒng)的分岔分析
本文選題:非光滑 + 多時(shí)間尺度 ; 參考:《江蘇大學(xué)》2017年碩士論文
【摘要】:多時(shí)間尺度問(wèn)題涉及到科學(xué)和工程技術(shù)等多個(gè)領(lǐng)域,具有廣泛的應(yīng)用背景,多尺度系統(tǒng)存在的復(fù)雜簇發(fā)振蕩及其產(chǎn)生的分岔機(jī)制是非線性科學(xué)的前沿研究熱點(diǎn)之一。迄今為止,對(duì)光滑動(dòng)力系統(tǒng)的研究已形成了一套較為完整的描述其分岔行為的方法理論。然而,工程實(shí)際中有許多的動(dòng)力系統(tǒng)含有非光滑的因素,如力學(xué)系統(tǒng)中的碰撞運(yùn)動(dòng),考慮摩擦因素時(shí)的粘滑振動(dòng),以及電路中的開關(guān)等等,故而對(duì)非光滑動(dòng)力系統(tǒng)的進(jìn)一步探究有著深遠(yuǎn)的意義;谝陨媳尘,本文考慮一類多時(shí)間尺度下的非光滑動(dòng)力系統(tǒng),并構(gòu)建了周期外激勵(lì)下的非自治Duffing系統(tǒng),當(dāng)周期激勵(lì)系統(tǒng)中的激勵(lì)頻率與系統(tǒng)的固有頻率之間存在量級(jí)差距時(shí),則可觀察到一種表現(xiàn)為大幅振蕩和微幅振蕩組合的簇發(fā)振蕩現(xiàn)象。選取適當(dāng)?shù)膮?shù)值,分別研究了三組不同參數(shù)條件下系統(tǒng)具體的簇發(fā)現(xiàn)象,即雙渦卷情形、三渦卷情形和四渦卷情形;谵D(zhuǎn)換相圖,并考慮到非光滑因素的影響,討論了相應(yīng)快子系統(tǒng)的分岔模式,揭示了該類非光滑系統(tǒng)中不同簇發(fā)振蕩的產(chǎn)生及其沉寂態(tài)與激發(fā)態(tài)之間相互轉(zhuǎn)遷的分岔機(jī)理。另外,針對(duì)于該類非光滑系統(tǒng)中的多平衡態(tài)共存現(xiàn)象,還考慮到了吸引子自身的演化行為,從而進(jìn)一步揭示了在非光滑因素影響下系統(tǒng)產(chǎn)生特殊振蕩現(xiàn)象的原因。同樣以Duffing振子為原型,并引入一個(gè)參數(shù)激勵(lì)項(xiàng)和一個(gè)周期外激勵(lì)項(xiàng),建立了一個(gè)參、外聯(lián)合激勵(lì)下的非光滑動(dòng)力系統(tǒng)模型。利用deMoivre公式將系統(tǒng)中存在的兩個(gè)慢變量等價(jià)轉(zhuǎn)換為一個(gè)慢變量,從而可以直接應(yīng)用傳統(tǒng)的快慢分析法來(lái)討論系統(tǒng)中存在的簇發(fā)振蕩,并揭示不同類型簇發(fā)振蕩的產(chǎn)生機(jī)理。文中選取了具有代表性的六組激勵(lì)頻率進(jìn)行對(duì)比分析,在參數(shù)激勵(lì)頻率取定為Ω_1 = 0.01時(shí),結(jié)果表明:隨著Ω_2/Ω_1成倍增加,系統(tǒng)振蕩結(jié)構(gòu)越來(lái)越復(fù)雜,并且系統(tǒng)軌跡經(jīng)歷沉寂態(tài)與激發(fā)態(tài)之間相互轉(zhuǎn)遷的次數(shù)也是成倍增加的;而當(dāng)參數(shù)激勵(lì)頻率固定為Ω_1=0.02時(shí),得到一般性的結(jié)論:在引入慢變量的過(guò)程中,對(duì)于所構(gòu)造的兩個(gè)函數(shù)f_1(x)= f_m~*(x)和f_2(x)= f_n~*(x),若m和n都為偶數(shù),則與系統(tǒng)對(duì)應(yīng)的轉(zhuǎn)換相圖一定是軸對(duì)稱的,且與原系統(tǒng)的對(duì)稱性無(wú)關(guān)。
[Abstract]:Multi-time scale problems involve many fields, such as science and engineering technology, and have a wide application background. The complex cluster oscillation and its bifurcation mechanism of multi-scale systems are one of the frontier research hotspots in nonlinear science.Up to now, the study of smooth dynamical system has formed a complete set of method theory to describe its bifurcation behavior.However, in engineering practice, many dynamic systems contain non-smooth factors, such as collision motion in mechanical systems, stick-slip vibration when friction factors are considered, switches in circuits, etc.Therefore, it is of great significance to further explore the non-smooth power system.Based on the above background, this paper considers a class of non-smooth dynamical systems with multiple time scales, and constructs a non-autonomous Duffing system under extraneous periodic excitation. When there is an order of magnitude difference between the excitation frequency of the periodic excitation system and the natural frequency of the system,A cluster oscillation with large amplitude oscillation and micro amplitude oscillation can be observed.In this paper, we select appropriate parameter values and study the specific cluster discovery images of the system under three groups of different parameter conditions, that is, the two-scroll case, the three-scroll case and the four-scroll case.Based on the transformation phase diagram and taking into account the influence of non-smooth factors, the bifurcation modes of the corresponding fast subsystems are discussed. The generation of different cluster oscillations and the bifurcation mechanism between the silent state and the excited state in this kind of non-smooth system are revealed.In addition, in view of the coexistence of multi-equilibrium states in this class of non-smooth systems, the evolutionary behavior of the attractor itself is also taken into account, which further reveals the causes of the special oscillation in the system under the influence of non-smooth factors.Taking the Duffing oscillator as the prototype and introducing a parametric excitation term and a periodic extrinsic excitation term, a non-smooth dynamic system model under the combined parametric and external excitation is established.By using deMoivre formula, the two slow variables in the system can be converted into one slow variable, thus the traditional fast and slow analysis method can be directly used to discuss the cluster oscillation in the system, and to reveal the mechanism of different types of cluster oscillation.In this paper, six groups of typical excitation frequencies are selected for comparative analysis. When the parameter excitation frequency is taken as 惟 _ s _ 1 = 0.01, the results show that the oscillation structure of the system becomes more and more complex with the multiplicity of 惟 _ 2 / 惟 _ s.Moreover, the number of transitions between quiet and excited states is increased exponentially, and when the excitation frequency is fixed at 惟 1 / 0.02, a general conclusion is drawn: in the process of introducing slow variables,For the two functions constructed in this paper, f _ S _ 1T _ x _ n = f _ S _ m _ n _ (x) and f _ S _ 2N _ x = f _ S _ n, if m and n are both even numbers, the corresponding transformation phase diagram of the system must be axisymmetric and independent of the symmetry of the original system.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O19
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邢雅清;陳小可;張正娣;畢勤勝;;多平衡態(tài)下簇發(fā)振蕩產(chǎn)生機(jī)理及吸引子結(jié)構(gòu)分析[J];物理學(xué)報(bào);2016年09期
2 余本嵩;金棟平;龐兆君;;繩系釋放時(shí)的航天器耦合動(dòng)力學(xué)分析[J];中國(guó)科學(xué):物理學(xué) 力學(xué) 天文學(xué);2014年08期
3 李旭;張正娣;畢勤勝;;兩時(shí)間尺度下非光滑廣義蔡氏電路系統(tǒng)的簇發(fā)振蕩機(jī)理[J];物理學(xué)報(bào);2013年22期
4 賈飛蕾;徐偉;李恒年;侯黎強(qiáng);;受擾航天器姿態(tài)動(dòng)力學(xué)中參數(shù)未知的混沌運(yùn)動(dòng)控制[J];物理學(xué)報(bào);2013年10期
5 張正娣;畢勤勝;;自激作用下洛倫茲振子的簇發(fā)現(xiàn)象及其分岔機(jī)制[J];中國(guó)科學(xué):物理學(xué) 力學(xué) 天文學(xué);2013年04期
6 李向紅;畢勤勝;;Forced bursting and transition mechanism in CO oxidation with three time scales[J];Chinese Physics B;2013年04期
7 ;Periodic switching oscillation and mechanism in a periodically switched BZ reaction[J];Science China(Technological Sciences);2012年10期
8 李向紅;畢勤勝;;Bursting oscillation in CO oxidation with small excitation and the enveloping slow-fast analysis method[J];Chinese Physics B;2012年06期
9 姜海波;張麗萍;陳章耀;畢勤勝;;脈沖作用下Chen系統(tǒng)的非光滑分岔分析[J];物理學(xué)報(bào);2012年08期
10 楊德森;董雷;時(shí)潔;蘭朝鳳;;多頻激勵(lì)Duffing系統(tǒng)振動(dòng)狀態(tài)研究[J];振動(dòng)與沖擊;2011年12期
相關(guān)會(huì)議論文 前1條
1 孫琪;徐鑒;;淺談非線性動(dòng)力學(xué)的發(fā)展史[A];第三屆全國(guó)力學(xué)史與方法論學(xué)術(shù)研討會(huì)論文集[C];2007年
相關(guān)博士學(xué)位論文 前2條
1 李向紅;不同時(shí)間尺度耦合化學(xué)振蕩反應(yīng)的非線性分析[D];江蘇大學(xué);2013年
2 徐慧東;非光滑動(dòng)力系統(tǒng)周期解的分岔研究[D];西南交通大學(xué);2008年
,本文編號(hào):1769445
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1769445.html