砷化銦納米線表面等離激元近場(chǎng)成像研究
發(fā)布時(shí)間:2018-04-17 06:32
本文選題:表面等離激元 + 近場(chǎng)成像。 參考:《中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院物理研究所)》2017年碩士論文
【摘要】:表面等離激元極化子是金屬-電介質(zhì)界面自由電子與光子相耦合產(chǎn)生的一種玻色行為的準(zhǔn)粒子。由于表面等離激元可突破衍射極限,有助于在納米尺度上對(duì)光子進(jìn)行操控,并可以獲得更強(qiáng)的光與物質(zhì)相互作用,從而成為科學(xué)與技術(shù)領(lǐng)域的研究熱點(diǎn)。科學(xué)家已經(jīng)發(fā)現(xiàn)等離激元廣泛存在于傳統(tǒng)貴金屬、新型低維材料、拓?fù)浣^緣體等一系列材料中。然而,傳統(tǒng)貴金屬有強(qiáng)的電聲耦合作用以及高的態(tài)密度分布,使得其表面等離激元不易調(diào)控,限制了實(shí)際應(yīng)用。半導(dǎo)體材料由于載流子濃度可控以及獨(dú)特的電子能帶結(jié)構(gòu),可有效降低帶間和帶內(nèi)損耗。其中,Ⅲ-Ⅴ族砷化銦半導(dǎo)體因其窄的直接帶隙和高的載流子遷移率,使其成為一種新型的表面等離激元材料。本論文基于近幾年發(fā)展起來(lái)的近場(chǎng)光學(xué)成像技術(shù)和有限元數(shù)值模擬方法,對(duì)一維砷化銦納米線表面等離激元的光學(xué)性質(zhì)進(jìn)行研究。論文研究成果主要包括三個(gè)部分,首先基于近場(chǎng)光學(xué)產(chǎn)生的局域場(chǎng)增強(qiáng)效應(yīng)成功激發(fā)了砷化銦半導(dǎo)體納米線的表面等離激元,并實(shí)現(xiàn)其實(shí)空間成像。接著,運(yùn)用有限元法對(duì)實(shí)驗(yàn)所得的近場(chǎng)圖像進(jìn)行分析擬合,數(shù)值模擬與實(shí)驗(yàn)現(xiàn)象符合良好,并能夠反推出納米線載流子濃度。最后,通過(guò)改變不同納米線直徑以及襯底,實(shí)現(xiàn)了對(duì)表面等離激元性質(zhì)的調(diào)控,包括其波長(zhǎng)、色散、局域因子及品質(zhì)因子等?傊,我們首次在納米級(jí)分辨率上實(shí)現(xiàn)了砷化銦納米線表面等離激元的實(shí)空間成像,并對(duì)其品質(zhì)因子、局域性、傳播行為進(jìn)行了系統(tǒng)研究。與此同時(shí),還初步實(shí)現(xiàn)了其表面等離激元的性質(zhì)調(diào)控,這為納米尺度上的光子調(diào)控以及應(yīng)用開(kāi)辟了一個(gè)新天地。
[Abstract]:The surface isoexciton polaron is a kind of quasi-particle produced by the coupling of free electrons and photons at the metal-dielectric interface.Due to the fact that the surface isotherm can break through the diffraction limit, it is helpful to manipulate photons at the nanometer scale and to obtain stronger interaction between light and matter, which has become a hot research topic in the field of science and technology.Scientists have found that isoexcitators are widely used in a series of materials, such as traditional precious metals, new low-dimensional materials, topological insulators and so on.However, the traditional precious metals have strong electro-acoustic coupling and high density of states, which make it difficult to regulate the surface isopherons, which limits the practical application.Due to the controllable carrier concentration and the unique electronic band structure, semiconductor materials can effectively reduce the inter-band and intra-band losses.Because of its narrow direct band gap and high carrier mobility, the 鈪,
本文編號(hào):1762464
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1762464.html
最近更新
教材專著