等譜與非等譜的廣義帶導(dǎo)數(shù)非線性薛定諤方程的精確解
本文選題:導(dǎo)數(shù)非線性薛定諤方程 切入點(diǎn):Hirota方法 出處:《東華理工大學(xué)》2017年碩士論文
【摘要】:本文研究了等譜與非等譜的廣義帶導(dǎo)數(shù)非線性薛定諤方程的精確解問題。主要內(nèi)容包括:利用Hirota方法得到廣義非等譜的導(dǎo)數(shù)非線性薛定諤方程的N-孤子解,給出了解的動力學(xué)特征,并將此方程及解約化到非等譜的導(dǎo)數(shù)非線性薛定諤方程及解;利用Wronskian技巧得到廣義帶導(dǎo)數(shù)的非線性薛定諤方程的廣義雙Wronskian解、孤子解及有理解。第一章,主要回顧了孤子理論的產(chǎn)生和發(fā)展歷程,并介紹了幾種孤子方程常見的求解方法。第二章,簡單地?cái)⑹隽穗p線性導(dǎo)數(shù)和Wronskian行列式中的一些基本概念和重要性質(zhì)。第三章,從Kaup-Newell譜問題出發(fā),導(dǎo)出廣義非等譜的導(dǎo)數(shù)非線性薛定諤方程,該方程可在合適的條件下,利用Hirota方法,尋找出該方程的單孤子、雙孤子解和N-孤子解,給出單孤子解及雙孤子相互作用的動力學(xué)特征,并通過約化,進(jìn)一步給出非等譜的導(dǎo)數(shù)非線性薛定諤方程Hirota形式的N-孤子解。第四章,在Wronskian技巧的基礎(chǔ)之上,將雙Wronskian元素滿足的條件推廣至矩陣形式,從而給出方程的廣義雙Wronskian解,并進(jìn)一步得到該方程的孤子解及有理解。第五章,對全文進(jìn)行總結(jié)以及對后續(xù)內(nèi)容的展望。
[Abstract]:In this paper, we study the exact solutions of the generalized nonlinear Schrodinger equation with derivative for isospectral and nonisophoric.The main contents are as follows: the N- soliton solution of the derivative nonlinear Schrodinger equation is obtained by using the Hirota method, the dynamical characteristics of the solution are given, and the equation is reduced to the derivative nonlinear Schrodinger equation and the solution of the non-isospectral nonlinear Schrodinger equation.By using the Wronskian technique, the generalized double Wronskian solution, soliton solution and understanding of the nonlinear Schrodinger equation with derivatives are obtained.In chapter 1, the generation and development of soliton theory are reviewed, and several common soliton equations are introduced.In chapter 2, some basic concepts and important properties of bilinear derivative and Wronskian determinant are briefly described.In chapter 3, from the problem of Kaup-Newell spectrum, the derivative nonlinear Schrodinger equation of generalized non-isospectral spectrum is derived. Under suitable conditions and using Hirota method, the single soliton solution, double soliton solution and N-soliton solution of the equation can be found.The dynamical characteristics of the single soliton solution and the double soliton interaction are given, and the N-soliton solutions in the form of Hirota form of the nonlinear differential Schrodinger equation with non-isospectral derivatives are further given by means of reduction.In chapter 4, on the basis of Wronskian's technique, the condition of double Wronskian element is extended to matrix form, and then the generalized double Wronskian solution of the equation is given, and the soliton solution and the understanding of the equation are obtained.The fifth chapter summarizes the full text and looks forward to the following content.
【學(xué)位授予單位】:東華理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O175.29
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 張江平;李輝賢;溫榮生;;廣義帶導(dǎo)數(shù)薛定諤方程的雙Wronskian解[J];江西科學(xué);2016年02期
2 田孝文;唐遠(yuǎn)鴻;;光孤子通信技術(shù)及其展望[J];中山大學(xué)研究生學(xué)刊(自然科學(xué).醫(yī)學(xué)版);2015年02期
3 李琪;;含自相容源的可積系統(tǒng)[J];東華理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期
4 ;N-Soliton Solutions of General Nonlinear Schrdinger Equation with Derivative[J];Communications in Theoretical Physics;2008年05期
5 劉月東;韓銳;翟景春;;非線性科學(xué)中的混沌[J];海軍航空工程學(xué)院學(xué)報(bào);2007年01期
6 陳登遠(yuǎn);Bcklund變換與n孤子解[J];數(shù)學(xué)研究與評論;2005年03期
7 張大軍,鄧淑芳;孤子解的Wronskian表示[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年03期
相關(guān)碩士學(xué)位論文 前4條
1 向文;(3+1)維BKP方程的精確解[D];浙江師范大學(xué);2015年
2 金榮杰;孤子方程的周期解及點(diǎn)變換的應(yīng)用[D];浙江師范大學(xué);2014年
3 陳欽亞;Hirota方法在兩類孤子方程中的應(yīng)用[D];鄭州大學(xué);2008年
4 徐曉紅;Dullin-Gottwald-Holm方程的雙線性問題及廣義Chebyshev映射的譜分解[D];江蘇大學(xué);2007年
,本文編號:1714447
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1714447.html