蜷曲式虹吸出水流道泵裝置水力特性及優(yōu)化
本文選題:數(shù)值模擬 切入點(diǎn):泵裝置 出處:《揚(yáng)州大學(xué)》2017年碩士論文
【摘要】:泵站出水流道是泵站工程水工建筑物重要組成部分,對(duì)于低揚(yáng)程的立式軸流泵裝置,虹吸出水流道具有斷流方式簡(jiǎn)單、水頭損失較小等特點(diǎn),因此在立式軸流泵裝置的泵站工程設(shè)計(jì)中出水流道常采用虹吸出水流道。本文原泵裝置模型是以某大型泵站泵裝置模型為原型,其采用的出水流道形式為蜷曲式虹吸出水流道,能夠較好的適應(yīng)當(dāng)?shù)氐牡匦螚l件,縮短了泵站縱向長(zhǎng)度,從而節(jié)省了土建投資,具有較好的站身穩(wěn)定性。目前,國(guó)內(nèi)外對(duì)于蜷曲式虹吸出水流道的研究并不多,所以對(duì)該種類(lèi)型的出水流道的水力特性還有待深入了解。本文采用CFX軟件,對(duì)原泵裝置模型進(jìn)行數(shù)值模擬,計(jì)算結(jié)果表明:原泵裝置模型進(jìn)水流道軸向流速均勻度較高,流線平順,但是出水流道流線整體較為紊亂,存在多處漩渦;其出水流道的水頭損失主要來(lái)源于彎管段產(chǎn)生的水頭損失;水流經(jīng)過(guò)出水流道由于渦動(dòng)能的回收,渦量逐步減小,但是流經(jīng)出口附近時(shí)截面平均渦量有所增加,主要由于出水流道出口附近存在漩渦所致;對(duì)原泵裝置模型進(jìn)行外特性預(yù)測(cè),將預(yù)測(cè)的結(jié)果與試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比,兩者整體趨勢(shì)基本一致,在小流量工況下,預(yù)測(cè)結(jié)果比模型試驗(yàn)數(shù)據(jù)揚(yáng)程略微偏小、效率稍微偏高,且差值很小,在設(shè)計(jì)工況附近及大流量工況高度吻合,表明計(jì)算結(jié)果可信。針對(duì)原泵裝置模型出水流道存在的問(wèn)題進(jìn)行優(yōu)化,根據(jù)各截面中心之間的距離與截面面積的分布關(guān)系,發(fā)現(xiàn)原泵裝置模型出水流道出口截面明顯偏大,可以通過(guò)抬高出水流道出口底部高程,從而減小出口截面的面積、改善流態(tài)、提高泵站運(yùn)行的效率,同時(shí)可以減少工程量。針對(duì)原泵裝置模型出水流道下降段進(jìn)行優(yōu)化,優(yōu)化方案1的出水流道下降段流態(tài)得到了明顯的改善,各典型截面的平均渦量降低,出水流道水頭損失降低,出水流道出口截面的軸向流速均勻度提高13個(gè)百分點(diǎn)以上,泵裝置運(yùn)行效率在各個(gè)工況下,較原泵裝置模型提高了 0.19個(gè)百分點(diǎn)至2.05個(gè)百分點(diǎn),高效區(qū)明顯拓寬。對(duì)出水流道整體進(jìn)行進(jìn)一步優(yōu)化,改變?cè)醚b置模型駝峰段截面面積,保證了出水流道各截面中心之間的距離與截面面積呈近似線性分布,優(yōu)化方案2很好的消除了原泵裝置模型出水流道存在的多處漩渦,各典型截面的平均渦量得到了進(jìn)一步的降低,出水流道的水頭損失在各個(gè)工況下減少0.03m以上,出水流道出口截面的軸向流速均勻度達(dá)到了 88%左右,提高了 18個(gè)百分點(diǎn)左右,泵裝置運(yùn)行效率在各個(gè)工況下,較原泵裝置模型提高了 0.23個(gè)百分點(diǎn)至3.64個(gè)百分點(diǎn),其中在在大流量工況下,效率提高最為明顯。研究了來(lái)流擾動(dòng)對(duì)進(jìn)、出水流道流態(tài)和水泵性能的影響,由于機(jī)組不對(duì)稱(chēng)運(yùn)行,水流不能平順的流入進(jìn)水流道,通過(guò)水力特性的對(duì)比,來(lái)流擾動(dòng)情況下,進(jìn)水流道進(jìn)口截面流態(tài)變差,進(jìn)水流道出口截面軸向流速均勻度有所降低,受其影響原泵裝置運(yùn)行的效率在各個(gè)工況下下降了 0.26個(gè)百分點(diǎn)至1.24個(gè)百分點(diǎn)。出水流道的流態(tài)同樣受到了影響,相較于原泵裝置模型更加紊亂,漩渦范圍擴(kuò)大,各典型截面的平均渦量增大,進(jìn)、出水流道及泵段水頭損失都有所增加,出口截面軸向流速均勻度降低。在泵站的實(shí)際運(yùn)行過(guò)程中應(yīng)盡量避免機(jī)組的不對(duì)稱(chēng)運(yùn)行、側(cè)向進(jìn)水等來(lái)流擾動(dòng)的發(fā)生。
[Abstract]:The outlet passage of pumping station is an important part of hydraulic engineering buildings, for low lift vertical axial flow pump, siphon flow props flow mode is simple, the characteristics of small head loss, so the water flow channel is often used in the siphon outlet conduit of pumping station engineering vertical axial-flow pump system design. The original pump device model is a large pump system model as the prototype, the outlet form curled type siphon outlet conduit, can adapt to the local terrain conditions, shorten the length so as to save the station, soil construction investment, has got good stability. At present, the domestic and foreign research on curled type siphon outlet conduit not much, so the hydraulic characteristics of the outlet of this type have to be understood deeply. This paper uses CFX software to simulate the original pump device model, the calculation results Show that the pump model of inlet axial velocity of high evenness, streamline smooth, but the overall outlet streamline is disorder, the existence of multiple vortex; head loss of head loss comes mainly from the outlet pipe section; water flows through the discharge passage due to eddy kinetic energy recovery, the vorticity decreases gradually, but through the near the exit section average vorticity increased, mainly due to the vortex caused by near outlet for export; characteristic prediction of the original pump device model, comparing the prediction results with the experimental data, both overall trend is basically the same, in the small flow rate condition, the prediction results than the model test data of head is slightly smaller, efficiency slightly higher, and the difference is very small, highly identical near the design condition and large flow condition, the calculation results show that the trusted. Aiming at the outlet of the pump device model The problem is optimized according to the distribution relation between distance and sectional area between the center of the section, found that the original pump model of outlet outlet section is too large, can raise through the outlet outlet bottom elevation, thereby reducing the export section of the area, improve the flow, improve the efficiency of pumping station operation, and can reduce the quantity of the original. Pump model of outlet descending optimization, optimization scheme of 1 outlet decline pattern has been significantly improved, the average vorticity of the typical cross-section decreases the amount of water flow, head loss is reduced, the axial velocity of outlet outlet uniformity increased by 13 percentage points, the efficiency of the pumping system under different operating conditions, an increase of 0.19 percentage points to 2.05 percentage points higher than the original pump device model, high efficiency significantly widened. Further optimization of the whole outlet, change the original Pump model of hump section area, the distance and the sectional area between the outlet section of each center is approximately linear distribution, optimization scheme 2 is eliminated more than the original vortex pump model of outlet conduit, the average amount of each typical section vortex has been further reduced, the head loss of the passage reduced by more than 0.03m in different conditions, the axial velocity of outlet outlet uniformity reached about 88%, an increase of 18 percentage points or so, the efficiency of the pumping system under different operating conditions, compared with the original pump model increased by 0.23 percentage points to 3.64 percentage points, which in the large flow rate condition, improve efficiency the most obvious. The flow disturbance on research, affect the water flow and pump performance, because the unit asymmetric operation, water can not be smooth into the inlet, through the hydraulic characteristics By contrast, flow disturbance, inlet inlet flow variation, inlet outlet axial velocity evenness decreased, affected by the efficiency of the original pump operation in different conditions decreased by 0.26 percentage points to 1.24 percentage points. The flow state of outlet conduit was also affected, compared to the original vortex pump device model more disorder, expand the scope of the mean vortex of the typical cross-section quantity increases, outlet and pump head loss increased, outlet axial velocity uniformity decreases. In the actual operation of the pumping station in the process should try to avoid the asymmetric operation of the unit, etc. the side inlet flow perturbation.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TV136.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李大亮;張曉芳;陳松山;;泵站出水流道的優(yōu)化試驗(yàn)[J];排灌機(jī)械;2007年04期
2 安子玉;;試析水泵轉(zhuǎn)速變化對(duì)進(jìn)出水流道水利損失影響[J];農(nóng)業(yè)與技術(shù);2013年05期
3 戴康程;抽水站房進(jìn)出水流道彎曲段部分中心線的數(shù)解法[J];農(nóng)田水利與小水電;1987年02期
4 朱勁木,何忠人,劉德祥,丘傳忻;大型軸流泵站雙向出水流道設(shè)計(jì)及模型試驗(yàn)驗(yàn)證[J];武漢大學(xué)學(xué)報(bào)(工學(xué)版);2005年04期
5 朱紅耕;張仁田;劉軍;朱泉榮;姚林碧;;水泵轉(zhuǎn)速變化對(duì)進(jìn)出水流道水力損失的影響[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2009年06期
6 蔣紅梅;陳松山;何鐘寧;;泗陽(yáng)泵站出水流道可行性方案對(duì)比分析研究[J];水利與建筑工程學(xué)報(bào);2011年01期
7 陳松山;何鐘寧;周正富;屈磊飛;葛強(qiáng);嚴(yán)登豐;;泵站鐘型出水流道水力特性試驗(yàn)及內(nèi)流場(chǎng)分析[J];水泵技術(shù);2006年03期
8 陳松山;何鐘寧;周正富;潘光星;嚴(yán)登豐;;泵站出水流道標(biāo)準(zhǔn)化設(shè)計(jì)與模型水力損失試驗(yàn)[J];水泵技術(shù);2007年02期
9 黃煥瑩;;淺談水泵站進(jìn)出水流道改造與技術(shù)設(shè)計(jì)[J];廣東科技;2008年03期
10 鄒玉濤;王宇;閆欣;;大型混流、軸流泵站水泵出水流道斷流設(shè)施優(yōu)化選擇的建議[J];水利水電技術(shù);2008年09期
相關(guān)會(huì)議論文 前1條
1 陳松山;周正富;屈磊飛;何仲寧;葛強(qiáng);嚴(yán)登豐;;低揚(yáng)程泵站箱涵式出水流道水力特性研究[A];2009全國(guó)大型泵站更新改造研討?hù)咝录夹g(shù)、新產(chǎn)品交流大會(huì)論文集[C];2009年
相關(guān)碩士學(xué)位論文 前10條
1 眭輝;開(kāi)敞式低揚(yáng)程大型泵裝置水力優(yōu)化設(shè)計(jì)研究[D];揚(yáng)州大學(xué);2015年
2 陳佳;雙向立式軸流泵裝置內(nèi)流機(jī)理及流固耦合分析[D];江蘇大學(xué);2016年
3 王們也;蜷曲式虹吸出水流道泵裝置水力特性及優(yōu)化[D];揚(yáng)州大學(xué);2017年
4 張雪;泵站虹吸式出水流道參數(shù)化設(shè)計(jì)[D];揚(yáng)州大學(xué);2017年
5 武蒙;立式軸流泵曲線擴(kuò)管雙向出水流道數(shù)值優(yōu)化研究[D];揚(yáng)州大學(xué);2012年
6 王剛;泵站進(jìn)、出水流道優(yōu)化水力設(shè)計(jì)方法研究[D];揚(yáng)州大學(xué);2012年
7 王兆飛;流量與環(huán)量對(duì)低揚(yáng)程立式泵裝置出水流道水頭損失的影響[D];揚(yáng)州大學(xué);2013年
8 韓丹;雙向貫流泵站進(jìn)出水流道流場(chǎng)數(shù)值模擬[D];河海大學(xué);2005年
9 戴紅霞;駝峰后帶長(zhǎng)直管的泵站虹吸式出水流道水力特性研究[D];河海大學(xué);2006年
10 杲東彥;虹吸式出水流道三維紊流數(shù)值模擬及優(yōu)化試驗(yàn)研究[D];揚(yáng)州大學(xué);2003年
,本文編號(hào):1687519
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1687519.html