基于憶阻器的混沌系統(tǒng)設(shè)計(jì)及應(yīng)用研究
發(fā)布時(shí)間:2018-03-30 14:08
本文選題:憶阻器 切入點(diǎn):憶阻混沌系統(tǒng) 出處:《西南大學(xué)》2017年碩士論文
【摘要】:在信息化社會(huì)迅猛發(fā)展的今天,提高信息傳遞的保密性、有效性及效率成為當(dāng)下科學(xué)和技術(shù)發(fā)展的重心。納米級(jí)尺寸的新型非線性器件憶阻器擁有斷電非易失性等特點(diǎn),憶阻器的提出為智能信息處理帶來了新的解決方案。在非線性電路的構(gòu)建中加入憶阻器,基于憶阻器的混沌系統(tǒng)擁有更加豐富的動(dòng)力學(xué)行為,產(chǎn)生的混沌信號(hào)擁有更佳的偽隨機(jī)特性,并且在功耗和體積等方面比傳統(tǒng)的混沌系統(tǒng)更占優(yōu)勢。使其在圖像加密、擴(kuò)頻通訊以及保密通訊等范疇有更高的研究價(jià)值。本文研究了憶阻器的數(shù)學(xué)及物理結(jié)構(gòu),分析了對(duì)應(yīng)的基本電學(xué)特性與非線性特性,結(jié)合憶阻器與混沌系統(tǒng),設(shè)計(jì)出基于憶阻器的混沌系統(tǒng)及其所對(duì)應(yīng)的電路。緊接著,本文將憶阻器用于人工神經(jīng)網(wǎng)絡(luò),建立了憶阻細(xì)胞神經(jīng)網(wǎng)絡(luò)。本論文重點(diǎn)探究了4個(gè)部分:(1)研究了憶阻元件的數(shù)學(xué)模型,并建立了其對(duì)應(yīng)的PSPICE模型,利用數(shù)值仿真和電路仿真探究其物理機(jī)制,進(jìn)而驗(yàn)證了其電學(xué)特性。(2)構(gòu)造了具有心型吸引子的憶阻混沌系統(tǒng)。不同于以往的憶阻混沌系統(tǒng),本系統(tǒng)不僅利用了憶阻器的非線性特性,還利用其可調(diào)控特性。憶阻器極性的改變會(huì)使該系統(tǒng)產(chǎn)生鏡像吸引子,并且隨著憶阻參數(shù)的調(diào)整該系統(tǒng)狀態(tài)能在混沌態(tài)、周期態(tài)、穩(wěn)定態(tài)之間轉(zhuǎn)換。使得該系統(tǒng)能同時(shí)運(yùn)用到需要產(chǎn)生混沌信號(hào)的系統(tǒng)和需要抑制混沌信號(hào)的實(shí)際運(yùn)用中。此外,探討了該憶阻混沌系統(tǒng)的基本特性如Poincaré截面、Lyapunov指數(shù)、分岔圖等,并建立了對(duì)應(yīng)的PSPICE仿真電路。(3)提出了一個(gè)新型憶阻時(shí)滯混沌系統(tǒng)。對(duì)提出的憶阻時(shí)滯混沌系統(tǒng)進(jìn)行了穩(wěn)定性分析,確定了顯示系統(tǒng)穩(wěn)定平衡點(diǎn)的相應(yīng)參數(shù)區(qū)域。討論了在不同參數(shù)情況下的系統(tǒng)狀態(tài),系統(tǒng)呈現(xiàn)出形態(tài)各異的混沌吸引子相圖,表現(xiàn)出豐富的混沌特性和非線性特性。將憶阻時(shí)滯混沌系統(tǒng)用于產(chǎn)生偽隨機(jī)信號(hào),并經(jīng)過實(shí)驗(yàn)證明所提出的系統(tǒng)具有良好的相關(guān)性,同時(shí)能獲得相對(duì)顯著的近似熵。該時(shí)滯混沌系統(tǒng)具有復(fù)雜的動(dòng)力學(xué)行為和良好的隨機(jī)性,能滿足擴(kuò)頻通信和圖像加密等眾多領(lǐng)域的應(yīng)用需要。(4)構(gòu)建出一種新的憶阻細(xì)胞神經(jīng)網(wǎng)絡(luò)。改進(jìn)了傳統(tǒng)的憶阻突觸橋電路,使之除了具有傳統(tǒng)突觸橋電路的優(yōu)勢外,還具有更加簡化的電路和簡化的權(quán)值變化條件。通過PSPICE仿真模擬了該突觸電路能夠?qū)崿F(xiàn)權(quán)值運(yùn)算。另外,將憶阻細(xì)胞神經(jīng)網(wǎng)絡(luò)用于圖像處理的去噪和邊緣提取,實(shí)驗(yàn)結(jié)果表明憶阻細(xì)胞神經(jīng)網(wǎng)絡(luò)在圖像處理的應(yīng)用中具有良好的效果。所提出的憶阻細(xì)胞神經(jīng)網(wǎng)絡(luò)可以減小電路尺寸及提高運(yùn)算速度,電路結(jié)構(gòu)具有更緊湊和更通用的優(yōu)點(diǎn),有助于促進(jìn)人工神經(jīng)網(wǎng)絡(luò)的硬件實(shí)現(xiàn)。
[Abstract]:With the rapid development of information society, improving the confidentiality, effectiveness and efficiency of information transmission has become the focus of current scientific and technological development. It brings a new solution for intelligent information processing. Adding a resistor to the construction of nonlinear circuit, the chaotic system based on the resistor has more abundant dynamic behavior. The resulting chaotic signals have better pseudorandom characteristics and are superior to the traditional chaotic systems in power consumption and volume. Spread spectrum communication and secure communication have higher research value. In this paper, the mathematical and physical structures of the resistor are studied, and the corresponding basic electrical and nonlinear characteristics are analyzed. The chaotic system based on the resistive device and its corresponding circuit are designed. Then, in this paper, the resistive device is used in the artificial neural network. In this paper, the mathematical model of the memory element is studied, and the corresponding PSPICE model is established. The physical mechanism of the memory element is explored by numerical simulation and circuit simulation. Furthermore, the electrical properties of this system are verified. (2) A kind of amnesia chaotic system with heart attractor is constructed. Different from the previous amnesia chaotic system, this system not only utilizes the nonlinear characteristics of the amnesia, but also makes use of the nonlinear characteristics of the mnemonic system. The change of the polarity of the resistor will cause the system to produce a mirror attractor, and the state of the system can be in the chaotic state, the periodic state with the adjustment of the parameters of the amnesia. The system can be applied to both the system which needs to produce chaotic signal and the practical application of chaotic signal suppression. In addition, the basic characteristics of the system such as Poincar 茅 section Lyapunov exponent, bifurcation diagram and so on are discussed. A new type of chaotic system with memory delay is proposed, and the stability of the proposed chaotic system is analyzed. The corresponding parameter regions of the stable equilibrium point of the system are determined. The state of the system under different parameters is discussed, and the chaotic attractor phase diagram of different shapes is presented in the system. The chaotic system with memory delay is used to generate pseudorandom signals, and the experimental results show that the proposed system has good correlation. At the same time, a relatively significant approximate entropy can be obtained. The chaotic system with time delay has complex dynamic behavior and good randomness. It can meet the needs of many applications, such as spread spectrum communication and image encryption, etc.) A new amnesia cell neural network is constructed, which improves the traditional mnemonic bridge circuit and makes it have the advantage of the traditional synaptic bridge circuit. The synaptic circuit is simulated by PSPICE to realize weight operation. In addition, the memory cell neural network is used for image processing denoising and edge extraction. The experimental results show that the memory cell neural network has a good effect in image processing. The proposed neural network can reduce the size of the circuit and increase the speed of operation. The circuit structure has the advantages of more compact and more general. It is helpful to promote the hardware implementation of artificial neural network.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN60;O415.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 PHAM Viet Thanh;JAFARI Sajad;VAIDYANATHAN Sundarapandian;VOLOS Christos;WANG Xiong;;A novel memristive neural network with hidden attractors and its circuitry implementation[J];Science China(Technological Sciences);2016年03期
2 閔國旗;王麗丹;段書凱;;離子遷移憶阻混沌電路及其在語音保密通信中的應(yīng)用[J];物理學(xué)報(bào);2015年21期
3 王小平;陳敏;沈軼;;Switching mechanism for TiO_2 memristor and quantitative analysis of exponential model parameters[J];Chinese Physics B;2015年08期
4 武花干;陳勝W,
本文編號(hào):1686249
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1686249.html
最近更新
教材專著