兩類Caputo型分?jǐn)?shù)階差分方程的初值問題
本文選題:Caputo型分?jǐn)?shù)階差分方程 切入點(diǎn):初值問題 出處:《安徽大學(xué)》2017年碩士論文
【摘要】:諸如物理學(xué)、航天科學(xué)、生命科學(xué)以及工程技術(shù)中的數(shù)學(xué)模型可以用分?jǐn)?shù)階差分方程來描述,因此對(duì)分?jǐn)?shù)階差分方程的研究有著十分重要的理論意義與應(yīng)用價(jià)值.本文討論了兩類非線性Caputo型分?jǐn)?shù)階差分方程的初值問題.全文主要內(nèi)容如下.第一章概述了分?jǐn)?shù)階差分方程的研究背景與現(xiàn)狀,介紹了本文的主要工作,還給出了本文所需的預(yù)備知識(shí).第二章主要研究了三個(gè)下限為0的Caputo型分?jǐn)?shù)階差分方程的初值問題.分別對(duì)階數(shù)在0到1之間、1到2之間的分?jǐn)?shù)階差分方程的初值問題進(jìn)行了研究.利用分?jǐn)?shù)階差分與和分的性質(zhì),建立了初值問題的等價(jià)Volterra和分方程,然后在函數(shù)有界且滿足Lipschitz條件時(shí),利用逐步逼近法與Gronwall不等式證明了初值問題存在唯一解.特別地,當(dāng)階數(shù)在1到2之間時(shí),給出了一個(gè)例子來驗(yàn)證結(jié)論的有效性.且利用Gronwall不等式討論了解對(duì)初值的連續(xù)依賴性.最后,將相應(yīng)的結(jié)論推廣到階數(shù)大于0的分?jǐn)?shù)階差分方程的初值問題中去.在本文第三章中,我們將第二章的結(jié)論進(jìn)行了相應(yīng)的推廣,類似地研究了三個(gè)下限不恒為0的Caputo型分?jǐn)?shù)階差分方程的初值問題.
[Abstract]:Mathematical models in physics, space science, life sciences, and engineering techniques can be described by fractional difference equations. Therefore, the study of fractional difference equations is of great theoretical significance and practical value. In this paper, we discuss the initial value problems of two kinds of nonlinear fractional difference equations of Caputo type. The main contents of this paper are as follows. The background and present situation of fractional difference equation, The main work of this paper is introduced. In chapter 2, we mainly study the initial value problems of three fractional difference equations of Caputo type with lower bound 0. Using the properties of fractional difference and sum, The equivalent Volterra and partial equations of the initial value problem are established. When the function is bounded and satisfies the Lipschitz condition, the existence of a unique solution to the initial value problem is proved by using the stepwise approximation method and the Gronwall inequality. In particular, when the order is between 1 and 2, An example is given to verify the validity of the conclusion, and the continuous dependence of the solution on the initial value is discussed by using the Gronwall inequality. The corresponding results are extended to the initial value problems of fractional difference equations with order greater than 0. In the third chapter, we generalize the conclusions in chapter 2. In this paper, we study the initial value problem of three fractional difference equations of Caputo type with nonconstant lower bound of 0.
【學(xué)位授予單位】:安徽大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王德金;鄭永愛;;分?jǐn)?shù)階混沌系統(tǒng)的延遲同步[J];動(dòng)力學(xué)與控制學(xué)報(bào);2010年04期
2 楊晨航,劉發(fā)旺;分?jǐn)?shù)階Relaxation-Oscillation方程的一種分?jǐn)?shù)階預(yù)估-校正方法[J];廈門大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年06期
3 王發(fā)強(qiáng);劉崇新;;分?jǐn)?shù)階臨界混沌系統(tǒng)及電路實(shí)驗(yàn)的研究[J];物理學(xué)報(bào);2006年08期
4 夏源;吳吉春;;分?jǐn)?shù)階對(duì)流——彌散方程的數(shù)值求解[J];南京大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期
5 張隆閣;;一類參數(shù)不確定混沌系統(tǒng)的分?jǐn)?shù)階自適應(yīng)同步[J];中國(guó)科技信息;2009年15期
6 陳世平;劉發(fā)旺;;一維分?jǐn)?shù)階滲透方程的數(shù)值模擬[J];高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào);2010年04期
7 辛寶貴;陳通;劉艷芹;;一類分?jǐn)?shù)階混沌金融系統(tǒng)的復(fù)雜性演化研究[J];物理學(xué)報(bào);2011年04期
8 黃睿暉;;分?jǐn)?shù)階微方程的迭代方法研究[J];長(zhǎng)春理工大學(xué)學(xué)報(bào);2011年06期
9 蔣曉蕓,徐明瑜;分形介質(zhì)分?jǐn)?shù)階反常守恒擴(kuò)散模型及其解析解[J];山東大學(xué)學(xué)報(bào)(理學(xué)版);2003年05期
10 陳玉霞;高金峰;;一個(gè)新的分?jǐn)?shù)階混沌系統(tǒng)[J];鄭州大學(xué)學(xué)報(bào)(理學(xué)版);2009年04期
相關(guān)會(huì)議論文 前10條
1 李西成;;經(jīng)皮吸收的分?jǐn)?shù)階藥物動(dòng)力學(xué)模型[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
2 謝勇;;分?jǐn)?shù)階模型神經(jīng)元的動(dòng)力學(xué)行為及其同步[A];第四屆全國(guó)動(dòng)力學(xué)與控制青年學(xué)者研討會(huì)論文摘要集[C];2010年
3 張碩;于永光;王亞;;帶有時(shí)滯和隨機(jī)擾動(dòng)的不確定分?jǐn)?shù)階混沌系統(tǒng)準(zhǔn)同步[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
4 李常品;;分?jǐn)?shù)階動(dòng)力學(xué)的若干關(guān)鍵問題及研究進(jìn)展[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
5 李常品;;分?jǐn)?shù)階動(dòng)力學(xué)簡(jiǎn)介[A];第三屆海峽兩岸動(dòng)力學(xué)、振動(dòng)與控制學(xué)術(shù)會(huì)議論文摘要集[C];2013年
6 蔣曉蕓;徐明瑜;;時(shí)間依靠分?jǐn)?shù)階Schr銉dinger方程中的可動(dòng)邊界問題[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
7 王花;;分?jǐn)?shù)階混沌系統(tǒng)的同步在圖像加密中的應(yīng)用[A];第二屆全國(guó)隨機(jī)動(dòng)力學(xué)學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年
8 王在華;;分?jǐn)?shù)階動(dòng)力系統(tǒng)的若干問題[A];第三屆全國(guó)動(dòng)力學(xué)與控制青年學(xué)者研討會(huì)論文摘要集[C];2009年
9 張碩;于永光;王莎;;帶有時(shí)滯和隨機(jī)擾動(dòng)的分?jǐn)?shù)階混沌系統(tǒng)同步[A];第十四屆全國(guó)非線性振動(dòng)暨第十一屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年
10 李西成;;一個(gè)具有糊狀區(qū)的分?jǐn)?shù)階可動(dòng)邊界問題的相似解研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 陳善鎮(zhèn);兩類空間分?jǐn)?shù)階偏微分方程模型有限差分逼近的若干研究[D];山東大學(xué);2015年
2 任永強(qiáng);油藏與二氧化碳埋存問題的數(shù)值模擬與不確定性量化分析以及分?jǐn)?shù)階微分方程的數(shù)值方法[D];山東大學(xué);2015年
3 蔣敏;分?jǐn)?shù)階微分方程理論分析與應(yīng)用問題的研究[D];電子科技大學(xué);2015年
4 卜紅霞;基于分?jǐn)?shù)階傅里葉域稀疏表征的CS-SAR成像理論與算法研究[D];北京理工大學(xué);2015年
5 楊變霞;分?jǐn)?shù)階Laplace算子的譜理論及其在微分方程中的應(yīng)用[D];蘭州大學(xué);2015年
6 邵晶;幾類微分系統(tǒng)的定性理論及其應(yīng)用[D];曲阜師范大學(xué);2015年
7 方益;分?jǐn)?shù)階Yamabe問題的一些緊性結(jié)果[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年
8 王國(guó)濤;幾類分?jǐn)?shù)階非線性微分方程解的存在理論及應(yīng)用[D];西安電子科技大學(xué);2014年
9 陳明華;分?jǐn)?shù)階微分方程的高階算法及理論分析[D];蘭州大學(xué);2015年
10 孟偉;基于分?jǐn)?shù)階拓展算子的灰色預(yù)測(cè)模型[D];南京航空航天大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 黃志穎;非線性時(shí)間分?jǐn)?shù)階微分方程的數(shù)值解法[D];華南理工大學(xué);2015年
2 趙九龍;基于分?jǐn)?shù)階微積分的三維圖像去噪增強(qiáng)算法研究[D];寧夏大學(xué);2015年
3 楚彩虹;單載波分?jǐn)?shù)階傅里葉域均衡系統(tǒng)及關(guān)鍵技術(shù)研究[D];鄭州大學(xué);2015年
4 全曉靜;非線性分?jǐn)?shù)階積分方程的Adomian解法[D];寧夏大學(xué);2015年
5 黃潔;非線性分?jǐn)?shù)階Volterra積分微分方程的小波數(shù)值解法[D];寧夏大學(xué);2015年
6 莊嶠;復(fù)合介質(zhì)中時(shí)間分?jǐn)?shù)階熱傳導(dǎo)正逆問題及其應(yīng)用研究[D];山東大學(xué);2015年
7 高素娟;分?jǐn)?shù)階延遲偏微分方程的緊致有限差分方法[D];山東大學(xué);2015年
8 趙珊珊;時(shí)—空分?jǐn)?shù)階擴(kuò)散方程的快速算法以及MT-TSCR-FDE的快速數(shù)值解法[D];山東大學(xué);2015年
9 王珍;分?jǐn)?shù)階奇異邊值問題的研究[D];山東師范大學(xué);2015年
10 馮靜;一類分?jǐn)?shù)階奇異脈沖邊值問題正解的存在性研究[D];山東師范大學(xué);2015年
,本文編號(hào):1666628
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1666628.html