納米金剛石基稀土雜化發(fā)光材料的制備及發(fā)光性能的研究
發(fā)布時間:2018-02-28 04:45
本文關鍵詞: 納米金剛石(NDs) 稀土 雜化材料 光電特性 出處:《鄭州大學》2017年碩士論文 論文類型:學位論文
【摘要】:近年來,納米金剛石(NDs)由于其化學物理穩(wěn)定性、豐富的表面基團和低毒性等優(yōu)異性質(zhì),使其在光學和生物醫(yī)學領域中引起了全世界的注意。然而,對于初級尺寸為3~5 nm的NDs的發(fā)光通常非常差,這已經(jīng)變成阻礙其在生物成像和發(fā)光裝置中應用的巨大障礙。因此,對如何彌補NDs的發(fā)光弱的研究就顯得尤為重要;谝陨峡紤],本論文主要通過一系列簡單的液相化學合成和修飾方法來制備了一系列的納米金剛石基稀土雜化發(fā)光材料,并對其形貌結構、發(fā)光性能和潛在應用進行了研究。主要取得了一下成果:1.納米金剛石-均苯四甲酸-稀土雜化發(fā)光材料通過用稀土(RE)配合物共價官能化NDs表面來制備明亮的雜化發(fā)光材料。其中,均苯四甲酸(PMA)作為有機敏化劑,通過化學反應共價連接到氨基封端的NDs表面上以螯合鑭系元素離子(Eu3+和Tb3+)的發(fā)光。通過調(diào)節(jié)Eu3+與Tb3+的摩爾比率(x:y=1:0、1:1、1:5和0:1),ND-PMA-EuxTby的雜化材料的發(fā)射顏色可以從紅色分別調(diào)節(jié)到橙色、黃色和綠色。未共摻的ND-PMA-Eu和ND-PMATb雜化發(fā)光材料的熒光衰減曲線與相應的稀土配合物相比較可以得到我們所制備的雜化材料具有更長的壽命,分別是0.82和0.92 ms。此外,雜化復合材料在254 nm紫外燈下照射60 h,在該過程中其發(fā)光強度與稀土配合物相比衰減較慢,具有很好的光穩(wěn)定性。值得注意的是為了驗證所制備的雜化發(fā)光材料的應用前景,我們使用合成后的ND-PMA-Eu和ND-PMA-Tb作為磷光體,涂覆在紫外(UV)芯片(280 nm)上,通過封裝工藝技術制備出了紅色和綠色兩種發(fā)光二極管(LED)器件。此外,我們對合成的雜化材料的溫度傳感特性進行了研究,發(fā)現(xiàn)共摻雜的復合材料ND-PMA-Eu1Tb5從10 K到300 K的溫度范圍內(nèi)能夠顯示出明顯的溫度依賴性發(fā)光行為。在溫度變化的過程中發(fā)生了從Tb離子到Eu離子的能量轉(zhuǎn)移。因此,基于納米金剛石的發(fā)光雜化材料可能在光學件、生物成像和溫度傳感等領域中發(fā)現(xiàn)潛在的應用。2.納米金剛石-α-噻吩甲酰三氟丙酮-稀土雜化發(fā)光材料首先我們對α-噻吩甲酰三氟丙酮(TTA)進行了硅烷化,得到功能化的TTASi有機配體。通過使用TTA-Si作為有機敏化劑,共價連接到硅烷化的NDs表面上來螯合鑭系元素離子Eu3+發(fā)光。結果顯示,通過360 nm的激發(fā)波長激發(fā)下,可以得到稀土Eu離子的特征發(fā)射,該波長對目前成熟的器件封裝工藝具有很大的優(yōu)勢。
[Abstract]:In recent years, nanocrystalline diamond (NDS) has attracted worldwide attention in the field of optics and biomedicine due to its excellent properties of chemical and physical stability, abundant surface groups and low toxicity. The luminescence of NDs with a primary size of 3 ~ 5 nm is usually very poor, which has become a huge obstacle to its application in biometric imaging and luminescence devices. It is very important to study how to make up for the weak luminescence of NDs. Based on the above considerations, a series of nanocrystalline diamond-based rare earth hybrid luminescent materials were prepared by a series of simple liquid-phase chemical synthesis and modification methods. And its morphology and structure, The luminescence properties and potential applications were studied. The main achievements were obtained: 1. Nanocrystalline diamond-phenyltetracarboxylic acid rare earth hybrid luminescent materials were prepared by covalent functionalized NDs surface of rare earth complexes to prepare bright hybrids. Luminous materials. Of which, Phenyltetracarboxylic acid (PMA) as an organic sensitizer, The luminescence of lanthanide ions EU _ 3 and Tb3) is chemically covalently attached to the surface of NDs with amino capping. The emission color of hybrid materials of ND-PMA-EU _ x Tby can be adjusted from red to orange by adjusting the molar ratio of Eu3 to Tb3 (x: 1: 0: 1: 1: 5 and 0: 1 / 1). Yellow and green. The fluorescence decay curves of undoped ND-PMA-Eu and ND-PMATb hybrid luminescent materials are 0.82 and 0.92 msrespectively, which are longer than those of the corresponding rare earth complexes. The luminescence intensity of hybrid composites irradiated under 254 nm ultraviolet lamp for 60 h is slower than that of rare earth complexes and has good light stability. It is worth noting that the application prospect of the hybrid luminescent materials is verified. Using synthesized ND-PMA-Eu and ND-PMA-Tb as phosphors and coated on UV UV chip 280nm), red and green LEDs were fabricated by packaging technology. In addition, We have studied the temperature sensing characteristics of the hybrid materials. It is found that the co-doped composite ND-PMA-Eu1Tb5 can exhibit obvious temperature-dependent luminescence behavior in the temperature range from 10K to 300K. The energy transfer from TB ion to EU ion takes place in the process of temperature change. Luminescent hybrid materials based on nanocrystalline diamond may be present in optical components, Nanocrystalline diamond-偽 -thiophene trifluoroacetone-rare earth hybrid luminescent materials were first silanized by 偽 -thiophenyl trifluoroacetone (TTAA). A functionalized TTASi organic ligand was obtained. By using TTA-Si as an organic sensitizer, the lanthanide ion Eu3 was chelated on the surface of silanized NDs by covalent ligand. The results showed that the ligand was excited by the excitation wavelength of 360nm. The characteristic emission of rare earth EU ion can be obtained, and this wavelength has a great advantage over the current mature device packaging technology.
【學位授予單位】:鄭州大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O482.31
【參考文獻】
相關期刊論文 前2條
1 劉金龍;田寒梅;陳良賢;魏俊俊;黑立富;李成明;;基于硅過渡層納米金剛石膜/GaN復合膜系的制備(英文)[J];新型炭材料;2016年05期
2 閆冰;;基于有機改性硅氧烷作為連接體組裝稀土光功能雜化材料[J];中國稀土學報;2014年01期
,本文編號:1545819
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1545819.html
最近更新
教材專著