中國(guó)證券市場(chǎng)波動(dòng)率的實(shí)證研究
本文關(guān)鍵詞: 收益率 波動(dòng)率 ARCH模型 GARCH模型 出處:《山東大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:中國(guó)證券市場(chǎng)經(jīng)過(guò)了二十幾年的發(fā)展,取得了巨大的成果,對(duì)整個(gè)國(guó)民經(jīng)濟(jì)做出了巨大的貢獻(xiàn),但是,中國(guó)證券市場(chǎng)還處于發(fā)展的初級(jí)階段,基礎(chǔ)還比較薄弱,各種政策制度還不夠完善,在發(fā)展中暴露了很多問(wèn)題,表現(xiàn)出了波動(dòng)嚴(yán)重的不穩(wěn)定性和明顯的杠桿效應(yīng)。中國(guó)證券市場(chǎng)中存在的問(wèn)題,越來(lái)越受到投資者和專家學(xué)者的重視,這些問(wèn)題對(duì)于改善中國(guó)金融市場(chǎng)具有重要的意義,所以本文的研究對(duì)象是中國(guó)證券市場(chǎng)的波動(dòng)現(xiàn)象。隨著現(xiàn)代金融市場(chǎng)的不斷發(fā)展,人們發(fā)現(xiàn)ARCH族模型能夠?qū)κ袌?chǎng)波動(dòng)進(jìn)行有效地刻畫(huà),所以本文的研究方法是利用ARCH(GARCH)模型對(duì)波動(dòng)率進(jìn)行建模,從而較為精確的對(duì)金融市場(chǎng)上的風(fēng)險(xiǎn)進(jìn)行度量,對(duì)風(fēng)險(xiǎn)的計(jì)量提出有價(jià)值的建議。本文以上證綜指、深證綜指及創(chuàng)業(yè)板指數(shù)的日收益率為基準(zhǔn),利用ARCH族模型并通過(guò)EViews軟件描述了我國(guó)股票價(jià)格收益率的統(tǒng)計(jì)特征,并對(duì)中國(guó)證券市場(chǎng)的波動(dòng)進(jìn)行了實(shí)證分析,在前人研究的基礎(chǔ)上,加入了成交量作為解釋變量進(jìn)行了更為深入的研究。通過(guò)研究我們發(fā)現(xiàn),中國(guó)證券市場(chǎng)收益率的基本統(tǒng)計(jì)特征中,峰度都遠(yuǎn)遠(yuǎn)大于在正態(tài)分布下的3,具有過(guò)度峰度,說(shuō)明了中國(guó)證券市場(chǎng)結(jié)構(gòu)不夠完善,收益率波動(dòng)較為突出,且收益率序列都是不服從正態(tài)分布的,且收益率序列存在ARCH效應(yīng)、杠桿效應(yīng)和不對(duì)稱性波動(dòng)。在引入了成交量這一變量后,通過(guò)Granger因果關(guān)系檢驗(yàn),表明了上海證券市場(chǎng)和深圳證券市場(chǎng)的收益率和成交量之間是存在因果關(guān)系。當(dāng)模型中加入了成交量后,反應(yīng)股票價(jià)格波動(dòng)持續(xù)性α1+β1的值減小了且擬合優(yōu)度提高了,說(shuō)明加入了成交量之后,確實(shí)更進(jìn)一步的解釋股票價(jià)格波動(dòng)的原因。但是在創(chuàng)業(yè)板市場(chǎng),成交量和股票價(jià)格波動(dòng)的GRANGER因果關(guān)系的檢驗(yàn)中,成交量變化率對(duì)收益率的波動(dòng)并不能很好的解釋,因?yàn)镻值不顯著。對(duì)加入了成交量的GARCH模型進(jìn)行實(shí)證研究中,雖然成交量變化率的系數(shù)大于0,但是卻對(duì)均值方差的擬合并不是很好,在5%顯著水平下并不顯著,更進(jìn)一步的表明了成交量對(duì)于收益率的波動(dòng)并不能很好的解釋。
[Abstract]:After more than 20 years of development, China's securities market has made great achievements and made great contributions to the entire national economy. However, China's securities market is still in the initial stage of development and its foundation is still relatively weak. All kinds of policies and systems are not perfect enough, and many problems have been exposed in the course of development, showing serious volatility instability and obvious leverage effect. The problems existing in China's securities market have been paid more and more attention by investors and experts and scholars. These problems are of great significance to the improvement of China's financial market, so the object of this paper is the volatility of China's securities market. It is found that the ARCH family model can effectively depict the volatility of the market, so the research method of this paper is to use the Arch GARCH model to model the volatility, so as to measure the risk in the financial market more accurately. Based on the daily rate of return of Shanghai Composite Index, Shenzhen Composite Index and growth Enterprise Market Index, this paper describes the statistical characteristics of stock price rate of return in China by using ARCH family model and EViews software. On the basis of the previous studies, we add the trading volume as the explanatory variable to further study the volatility of China's securities market. Through the study, we find that, In the basic statistical characteristics of the return rate of China's securities market, kurtosis is far greater than that under normal distribution, which has excessive kurtosis, which indicates that the structure of China's securities market is not perfect, and the fluctuation of yield is more prominent. And the return series are all dissatisfied with normal distribution, and there are ARCH effect, leverage effect and asymmetry fluctuation in the return series. After introducing the variable of trading volume, Granger causality test is adopted. The results show that there is a causal relationship between the return rate and trading volume in Shanghai Stock Market and Shenzhen Stock Market. When the trading volume is added to the model, the value of 偽 1 尾 1, which reflects the volatility of the stock price, decreases and the goodness of fit increases. After adding the trading volume, it is true that the reason for the stock price fluctuation is further explained. But in the gem market, the GRANGER causality test of the volume and the stock price fluctuation, The change rate of turnover does not explain the volatility of yield because P value is not significant. The empirical study of GARCH model with turnover is carried out. Although the coefficient of change rate of turnover is greater than 0, the fitting of mean variance is not very good, and it is not significant at the level of 5%, which further shows that the trading volume does not explain the volatility of yield very well.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F832.51;O212.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張廣玉,丁俊君;TARCH-M模型在測(cè)度上海證券市場(chǎng)風(fēng)險(xiǎn)中的應(yīng)用[J];中南財(cái)經(jīng)政法大學(xué)學(xué)報(bào);2004年05期
2 閻海巖;中國(guó)股市波動(dòng)性研究[J];統(tǒng)計(jì)與信息論壇;2004年05期
3 宋逢明,李翰陽(yáng);中國(guó)股票波動(dòng)性的分解實(shí)證研究[J];財(cái)經(jīng)論叢(浙江財(cái)經(jīng)學(xué)院學(xué)報(bào));2004年04期
4 潘越;成交量的GARCH修正模型在股市波動(dòng)中的應(yīng)用[J];統(tǒng)計(jì)與決策;2004年08期
5 蘇衛(wèi)東,張世英;多元長(zhǎng)記憶SV模型及其在滬深股市的應(yīng)用[J];管理科學(xué)學(xué)報(bào);2004年01期
6 王金田,趙松山;股市日收益率波動(dòng)性與交易量關(guān)系[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2004年01期
7 張永東,畢秋香;上海股市波動(dòng)性預(yù)測(cè)模型的實(shí)證比較[J];管理工程學(xué)報(bào);2003年02期
8 趙留彥,王一鳴;滬深股市交易量與收益率及其波動(dòng)的相關(guān)性:來(lái)自實(shí)證分析的證據(jù)[J];經(jīng)濟(jì)科學(xué);2003年02期
9 陳千里,周少甫;上證指數(shù)收益的波動(dòng)性研究[J];數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究;2002年06期
10 陳浪南,黃杰鯤;中國(guó)股票市場(chǎng)波動(dòng)非對(duì)稱性的實(shí)證研究[J];金融研究;2002年05期
,本文編號(hào):1502177
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1502177.html