青藏高原與伊朗高原熱力協(xié)同作用對夏季南亞高壓與中國降水的影響
本文關(guān)鍵詞: 青藏高原 伊朗高原 地表感熱通量 地表潛熱通量 南亞高壓 出處:《中國氣象科學(xué)研究院》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:青藏高原是我國東部地區(qū)災(zāi)害性天氣的“上游關(guān)鍵區(qū)”,伊朗高原熱力作用對其鄰近地區(qū)和下游區(qū)域的大氣環(huán)流也有重要影響,是影響我國氣候的眾多因子中不可忽視的一部分。因此對兩高原的熱力協(xié)同作用進(jìn)行研究,可以進(jìn)一步認(rèn)識造成我國氣候異常的外強迫因子,有助于提高氣候預(yù)測準(zhǔn)確率進(jìn)而減少洪澇等自然災(zāi)害帶來的損失。本文綜合利用再分析資料與臺站觀測資料,基于EOF分析、SVD分析、相關(guān)分析等統(tǒng)計方法,詳細(xì)分析了春夏季青藏高原與伊朗高原地表熱通量的時空分布特征和聯(lián)系,以及春季兩個高原地表感熱異常對夏季南亞高壓和中國降水的影響。主要結(jié)論如下:(1)青藏高原地表熱通量的時空分布表現(xiàn)為:春、夏季地表感熱量值西部大而東部小,地表潛熱則相反,東部地區(qū)潛熱大而西部地區(qū)潛熱小;地表感熱在春季最大且大于地表潛熱,地表潛熱在夏季最大且大于地表感熱。在年際時間尺度上,春夏季青藏高原地表熱通量異常的年際變化在東、西部是不一致的,高原西部地表感熱與潛熱有較強的負(fù)相關(guān)關(guān)系,而高原東部地表感熱與潛熱關(guān)系并不顯著。青藏高原地表感熱異常具有很強的持續(xù)性,當(dāng)春季地表感熱較強(弱)時,夏季高原地表感熱同樣較強(弱)。青藏高原東部與西部地表熱通量的年代際變化有明顯差異,春(夏)季青藏高原東部地表感熱有顯著的年代際減弱趨勢,在1998(2001)年發(fā)生年代際轉(zhuǎn)折,由正異常轉(zhuǎn)為負(fù)異常;而青藏高原西部地表感熱在春季有顯著的增大趨勢,在2003年發(fā)生年代際轉(zhuǎn)折,由負(fù)異常轉(zhuǎn)為正異常。青藏高原東部地表潛熱僅在春季為顯著減弱趨勢,在2003年出現(xiàn)年代際轉(zhuǎn)折,由正異常轉(zhuǎn)為負(fù)異常;青藏高原西部地表潛熱在春、夏季都有顯著減弱趨勢,年代際轉(zhuǎn)折出現(xiàn)在21世紀(jì)初,由正異常轉(zhuǎn)為負(fù)異常。(2)對于伊朗高原,春、夏季地表熱通量的空間分布在整個區(qū)域較一致,地表感熱在夏季最大,地表潛熱在春季大、夏季小,但各季節(jié)地表感熱都大于地表潛熱。相對于青藏高原地表感熱,伊朗高原地表感熱在各月都更大。在年際時間尺度上,春、夏季伊朗高原各區(qū)域地表熱通量異常的年際變化較一致;地表感熱與潛熱有很強的負(fù)相關(guān)關(guān)系;伊朗高原地表感熱、潛熱異常都具有持續(xù)性,當(dāng)春季地表感熱(潛熱)通量較強(弱)時,夏季地表感熱(潛熱)通量同樣較強(弱)。伊朗高原北部與南部地表熱通量的年代際變化存在差異。其中,春、夏季伊朗高原北部地表感熱(潛熱)呈顯著增加(減弱)趨勢,在20世紀(jì)末發(fā)生了年代際轉(zhuǎn)折,春、夏季北部地表感熱(潛熱)由負(fù)(正)異常轉(zhuǎn)為正(負(fù))異常。伊朗高原南部春、夏季熱通量無顯著變化趨勢,但春季地表感熱、潛熱與夏季地表感熱同樣在20世紀(jì)末存在年代際轉(zhuǎn)折,地表感熱(潛熱)由負(fù)(正)異常轉(zhuǎn)為正(負(fù))異常。(3)春、夏季兩個高原地區(qū)地表熱通量的關(guān)系主要表現(xiàn)為:就春季同期變化而言,伊朗高原地表感熱與青藏高原西部地表感熱具有同位相變化關(guān)系,與青藏高原東部地表感熱具有反相變化關(guān)系,伊朗高原地表潛熱與青藏高原東部地表潛熱具有同位相變化關(guān)系;就非同期變化而言,春季伊朗高原地表感熱與夏季青藏高原東部地表感熱存在反相變化關(guān)系。(4)春季月份中,5月伊朗高原與青藏高原地表感熱異常協(xié)同作用(兩個高原地區(qū)感熱異常反相變化)與6月南亞高壓的關(guān)系最密切。當(dāng)5月伊朗高原感熱偏大(小)而青藏高原感熱偏小(大)時,6月印度夏季風(fēng)強(弱),印度北部的對流活動旺盛(衰弱),因此印度北部凝結(jié)潛熱釋放偏強(偏弱),南亞高壓偏西北(東南)。(5)5月兩高原地表感熱異常協(xié)同作用只是引起南亞高壓主體位置西北-東南方向擺動的觸發(fā)機制,對南亞高壓的影響只能持續(xù)到6月。7月南亞高壓的西北-東南方向擺動是環(huán)流與降水帶來的凝結(jié)潛熱之間的正反饋過程導(dǎo)致的。6月南亞高壓位置偏西北(東南),通過調(diào)節(jié)印度夏季風(fēng)區(qū)與東亞夏季風(fēng)區(qū)的凝結(jié)潛熱造成7月南亞高壓位置偏西北(東南),使7月印度夏季風(fēng)和東亞夏季風(fēng)偏強(弱)。(6)7月印度夏季風(fēng)偏強(弱)造成印度北部降水偏多(偏少),東亞夏季風(fēng)偏強(弱)造成中國長江中下游降水偏少(偏多),而這種降水配置又進(jìn)一步使南亞高壓位置偏西北(東南)。
[Abstract]:The Tibetan Plateau is the eastern region of China weather disasters "upstream key region, atmospheric circulation in Iran plateau region and the thermal effect on the downstream region also has an important influence, is an important part of many factors influence the climate in China. So the thermodynamic two plateau synergy research, can to further understand the cause of abnormal climate in China external forcing factors, help to improve the accuracy of climate prediction and reduce the losses caused by floods and other natural disasters. This paper uses analysis data and observation data analysis of SVD stations, EOF analysis, based on the statistical methods of correlation analysis, a detailed analysis of the temporal and spatial distribution characteristics and the the plateau in spring and summer and the surface heat flux of the Iran plateau, and in the spring of two plateau surface sensible heat anomaly of summer South Asian high and China precipitation. The main conclusions are as follows: (1) green The temporal and spatial distribution of Tibetan Plateau surface heat flux as follows: spring, summer surface calorific value western and Eastern small, surface latent heat in the eastern region and the western region of small latent heat latent heat; sensible heat and latent heat in the spring maximum is bigger than the surface, surface latent heat in summer and more than the maximum surface sensible heat on the interannual. On the scale of the spring and summer of Qinghai Tibet plateau surface heat flux anomalies interannual variation in the East, the west is not consistent, the western plateau surface sensible heat and latent heat has a strong negative correlation, while the eastern part of the plateau surface sensible heat and latent heat is not significant. The relationship between Tibetan Plateau sensible heat anomaly is persistent, when the spring surface sensible heat strong (weak) summer, the plateau surface sensible heat as strong (weak). There was significant difference between the interdecadal variation of the eastern Tibetan Plateau and the western surface heat flux, the spring season (summer) in the eastern Tibetan Plateau have significant surface sensible heat The interdecadal weakening trend, in 1998 (2001) years interdecadal, by positive anomalies in turn negative anomaly; while the western Qinghai Tibet plateau surface sensible heat in spring has a significant increasing trend, in 2003 the interdecadal turning from negative abnormal to positive anomalies in the eastern Tibetan Plateau. Only the surface latent heat in the spring as a significant weakening trend, interdecadal turning point in 2003, by the positive anomaly to negative anomaly; Western Tibetan Plateau surface latent heat in the spring and summer have a significant weakening trend, interdecadal transition appears at the beginning of twenty-first Century, the positive anomaly to negative anomalies. (2) for the Iran plateau, the spring, the surface heat flux in summer the spatial distribution in the whole region is consistent with the surface sensible heat in the summer, surface latent heat in the spring, summer is small, but the seasonal surface sensible heat is greater than the surface latent heat sensible heat. Compared to the Qinghai Tibet Plateau, Iran in the form of sensible heat in each month are more In the inter annual time scale, spring and summer interannual variation in Iran plateau regions of the surface heat flux anomalies are consistent; surface sensible heat and latent heat has a strong negative correlation; Iran plateau surface sensible heat, latent heat anomaly has a persistent, when spring surface sensible heat (latent heat flux) strong (weak) when in summer, the surface sensible heat (latent heat flux) equally strong (weak). The existence of Iran plateau north and south of the interdecadal variation of surface heat flux differences. Among them, the spring and summer in North Iran plateau surface sensible heat (latent heat) was significantly increased (decreased) trend, interdecadal shifts, at the end of twentieth Century spring. The northern summer surface sensible heat (latent heat) from negative (positive) anomaly to positive (negative) anomalies. The southern Iran plateau in spring, summer heat flux had no significant change, but the spring sensible heat, latent heat and sensible heat in summer also has decadal turning at the end of twentieth Century, the surface sensible heat (latent heat) A negative (positive) anomaly to positive (negative) anomalies. (3) the spring summer two plateau surface heat flux is mainly as follows: the spring period changes, Iran plateau and Western Tibetan Plateau sensible heat of surface sensible heat in phase change, phase change has relationship with the Tibetan Plateau the original Eastern Iran plateau surface sensible heat, latent heat and latent heat in the eastern Tibetan Plateau having phase change between non collocated; period change, spring Iran plateau sensible heat flux and surface sensible heat over the eastern Tibetan Plateau have inverse relationship. (4) the spring months in May, the Iran plateau and Qinghai Tibet plateau surface sensible heat anomaly synergy (two plateau phase change thermal anomaly) most closely with the June South Asia high relationship. In May when the Iran plateau sensible heat is larger (smaller) and the Qinghai Tibet Plateau sensible heat is small (large), the June India summer monsoon strong (weak), India The strong convective activity in the North (weak), the northern India latent heat release is stronger (weaker), South Asia high Northwest (southeast). (5) surface in May two plateau sensible heat anomaly synergy caused only Northwest - southeast of South Asia high body position swing the trigger mechanism of the South Asia high impact only last June.7 months to South Asia high Northwest - southeast direction swing between latent heat circulation and precipitation brought the positive feedback process leads to.6 months of South Asia high position Northwest (southeast), the latent heat regulation area of India summer monsoon region and East Asia summer wind in July caused the South Asia high position Northwest (southeast) so, the July India summer monsoon and the East Asian summer monsoon is strong (weak). (6) July India summer monsoon is stronger (weaker) resulting in more rainfall in northern India (small), the East Asian summer monsoon is strong (weak) caused by rainfall in the Yangtze River downstream of Chinese (partial Much more), and this precipitation allocation further makes the South Asian high pressure north-west (southeast).
【學(xué)位授予單位】:中國氣象科學(xué)研究院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P461
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李平;;伊朗1990年大地震[J];生命與災(zāi)害;2012年06期
2 周任君;陳月娟;;青藏高原和伊朗高原上空臭氧變化特征及其與南亞高壓的關(guān)系[J];中國科學(xué)技術(shù)大學(xué)學(xué)報;2005年06期
3 趙勇;楊青;黃安寧;錢永甫;;青藏和伊朗高原熱力異常與北疆夏季降水的關(guān)系[J];氣象學(xué)報;2013年04期
4 畢云,許利,錢永甫;青藏、伊朗高原地區(qū)300hPa溫度場異常與我國降水的關(guān)系[J];高原氣象;2004年04期
5 常承法;;青藏高原碰撞期后構(gòu)造與土耳其-伊朗高原的比較(Ⅱ)[J];地震地質(zhì)譯叢;1986年03期
6 劉伉;;興都庫什山脈的長度[J];地圖;2009年06期
7 澤馬爾亞萊·塔爾齊;文化的十字路口和珍品匯萃之地[J];中國青年科技;2001年06期
8 郭志冰;西亞氣候的特征及其成因[J];西南師范學(xué)院學(xué)報(自然科學(xué)版);1984年03期
9 常承法;;青藏高原碰撞期后構(gòu)造與土耳其-伊朗高原的比較(Ⅰ)[J];地震地質(zhì)譯叢;1986年02期
10 ;[J];;年期
相關(guān)重要報紙文章 前1條
1 張文木;伊明高原:中國西陲安全的“橋頭堡”[N];中國國防報;2013年
相關(guān)碩士學(xué)位論文 前2條
1 張浩鑫;青藏高原與伊朗高原熱力協(xié)同作用對夏季南亞高壓與中國降水的影響[D];中國氣象科學(xué)研究院;2017年
2 于洋;中亞伊朗地區(qū)早期金屬時代初論[D];吉林大學(xué);2007年
,本文編號:1489683
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1489683.html