多環(huán)芳烴混合物在表面活性劑膠束體系中的增溶機制研究
發(fā)布時間:2021-07-09 20:46
由于化石燃料需求量和使用量的持續(xù)增長以及溢油事故的頻繁發(fā)生,這些過程產(chǎn)生的多環(huán)芳烴(polycyclic aromatic hydrocarbons,PAHs)進(jìn)入到環(huán)境中對人類的健康和生態(tài)系統(tǒng)造成嚴(yán)重威脅。根據(jù)2014年4月頒布的全國土壤污染狀況調(diào)查公報,PAHs是我國土壤中第二大類型的有機污染物。表面活性劑增效修復(fù)(Surfactant-enhanced remediation,SER)技術(shù)是一種高效修復(fù)PAHs污染環(huán)境的方法,能促進(jìn)PAHs從非水相溶液/土壤遷移至水相,提高PAHs的有效性,從而便于進(jìn)行后續(xù)處理(如生物降解和高級氧化)。PAHs分為2-3個苯環(huán)組成的低分子量和4個及以上苯環(huán)組成的高分子量的PAHs,主要以復(fù)合物的形式存在于實際污染環(huán)境中。已有的研究更多集中于表面活性劑對單一PAHs的去除效果,而關(guān)于不同PAHs混合污染物之間的相互作用對表面活性劑增效修復(fù)效率的影響鮮有報道。此外,關(guān)于PAHs在表面活性劑膠束中的共存機制也有待研究。本論文基于實際污染場地的復(fù)合污染特征,研究了低分子量PAHs和高低分子量PAHs的混合增溶特性,并結(jié)合分子動力學(xué)模擬方法剖析PAHs在膠...
【文章來源】:華南理工大學(xué)廣東省 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:149 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background on polycyclic aromatic hydrocarbons (PAHs)
1.1.1 Pollution situation of PAHs
1.1.2 Detrimental effects of PAHs
1.2 Overview of surfactant-based remediation technologies for the decontamination ofPAH-polluted environments
1.2.1 Surfactant-enhanced remediation (SER)
1.2.2 Surfactant-enhanced bioremediation (SEBR)
1.2.3 Surfactant-enhanced phytoremediation (SEPR)
1.2.4 SER-advanced oxidation processes (AOPs)
1.3 Drivers of SER in PAH decontamination
1.3.1 Factors affecting surfactants‘ solubilization power
1.3.2 Factors affecting adsorption of surfactants onto soil matrix
1.4 Research questions to be addressed
1.5 Research objectives
Chapter 2 Molecular dynamics simulation and its application in studying solubilizationcharacteristics
2.1 Molecular dynamics simulation
2.2 The classical force field (FF)
2.3 Periodic boundary condition (PBC)
2.4 Simulation in constant pressure and temperature
2.4.1 Control of the temperature
2.4.2 Control of the pressure
2.5 Applications of MD in studying solubilization process
Chapter 3 Competitive solubilization of LMW PAHs in single and mixed micelle systems
3.1 Materials and methods
3.1.1 Materials
3.1.2 Methods
3.2 Results and discussion
3.2.1 Micelle characteristics
3.2.2 Solubilization and cosolubilization of LMW PAHs in surfactant systems
3.2.3 Locus of solubilization
3.2.4 PAH-PAH interaction in the micelle
3.3 Conclusions
Chapter 4 Cosolubilization phenomena occurred in codesorption of PAH mixtures during soilflushing
4.1 Materials and methods
4.1.1 Materials
4.1.2 Methods
4.2 Results and discussion
4.2.1 Solubilization and cosolubilization of PHE and PYR in different surfactantsystems
4.2.2 Adsorption of TX100 onto soil
4.2.3 Desorption and codesorption of PHE and PYR from soil
4.2.4 Effect of soil composition and PAH properties
4.2.5 Distribution of PAHs between soil and aqueous surfactant solution
4.3 Conclusions
Chapter 5 Atomistic simulation of solubilization of PAHs in a sodium dodecyl sulfate micelle
5.1 Simulation Details
5.1.1 Model systems
5.1.2 Simulation details
5.2 Results and discussion
5.2.1 Distribution and movements of PAHs in the SDS micelle
5.2.2 PAH-PAH and PAH-water interaction inside the micelle
5.2.3 Effect of solubilized PAHs on micelle dynamics and structural properties
5.3 Conclusions
Conclusions, innovations and future prospects
Conclusions
Innovations
Future prospects
References
攻讀博士期間取得的研究成果
致謝
附件
【參考文獻(xiàn)】:
期刊論文
[1]用木蠟修飾土壤顆粒抑制沙土水分蒸發(fā)的研究(英文)[J]. 張增志,王宏娟,李翠蘭. Journal of Forestry Research. 2009(01)
[2]Polycyclic Aromatic Hydrocarbons in Agricultural Soils of the Southern Subtropics,China[J]. HAO Rong~(1,2) WAN Hong-Fu~2 SONG Yan-Tun~3 JIANG Hong~4 PENG Shao-Lin~(3,*2) 1 South China Botanical Garden,Chinese Academy of Sciences,Guangzhou 510650 (China) 2 Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control,Guangdong Institute of Eco-Environment and Soil Sciences,Guangzhou 510650 (China) 3 School of Life Science,Sun Yat-Sen University,Guangzhou 510275 (China) 4 Conservation Biology Institute,260 SW Madison Ave.,Suite 106 Corvallis,OR 97333 (USA). Pedosphere. 2007(05)
本文編號:3274468
【文章來源】:華南理工大學(xué)廣東省 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:149 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background on polycyclic aromatic hydrocarbons (PAHs)
1.1.1 Pollution situation of PAHs
1.1.2 Detrimental effects of PAHs
1.2 Overview of surfactant-based remediation technologies for the decontamination ofPAH-polluted environments
1.2.1 Surfactant-enhanced remediation (SER)
1.2.2 Surfactant-enhanced bioremediation (SEBR)
1.2.3 Surfactant-enhanced phytoremediation (SEPR)
1.2.4 SER-advanced oxidation processes (AOPs)
1.3 Drivers of SER in PAH decontamination
1.3.1 Factors affecting surfactants‘ solubilization power
1.3.2 Factors affecting adsorption of surfactants onto soil matrix
1.4 Research questions to be addressed
1.5 Research objectives
Chapter 2 Molecular dynamics simulation and its application in studying solubilizationcharacteristics
2.1 Molecular dynamics simulation
2.2 The classical force field (FF)
2.3 Periodic boundary condition (PBC)
2.4 Simulation in constant pressure and temperature
2.4.1 Control of the temperature
2.4.2 Control of the pressure
2.5 Applications of MD in studying solubilization process
Chapter 3 Competitive solubilization of LMW PAHs in single and mixed micelle systems
3.1 Materials and methods
3.1.1 Materials
3.1.2 Methods
3.2 Results and discussion
3.2.1 Micelle characteristics
3.2.2 Solubilization and cosolubilization of LMW PAHs in surfactant systems
3.2.3 Locus of solubilization
3.2.4 PAH-PAH interaction in the micelle
3.3 Conclusions
Chapter 4 Cosolubilization phenomena occurred in codesorption of PAH mixtures during soilflushing
4.1 Materials and methods
4.1.1 Materials
4.1.2 Methods
4.2 Results and discussion
4.2.1 Solubilization and cosolubilization of PHE and PYR in different surfactantsystems
4.2.2 Adsorption of TX100 onto soil
4.2.3 Desorption and codesorption of PHE and PYR from soil
4.2.4 Effect of soil composition and PAH properties
4.2.5 Distribution of PAHs between soil and aqueous surfactant solution
4.3 Conclusions
Chapter 5 Atomistic simulation of solubilization of PAHs in a sodium dodecyl sulfate micelle
5.1 Simulation Details
5.1.1 Model systems
5.1.2 Simulation details
5.2 Results and discussion
5.2.1 Distribution and movements of PAHs in the SDS micelle
5.2.2 PAH-PAH and PAH-water interaction inside the micelle
5.2.3 Effect of solubilized PAHs on micelle dynamics and structural properties
5.3 Conclusions
Conclusions, innovations and future prospects
Conclusions
Innovations
Future prospects
References
攻讀博士期間取得的研究成果
致謝
附件
【參考文獻(xiàn)】:
期刊論文
[1]用木蠟修飾土壤顆粒抑制沙土水分蒸發(fā)的研究(英文)[J]. 張增志,王宏娟,李翠蘭. Journal of Forestry Research. 2009(01)
[2]Polycyclic Aromatic Hydrocarbons in Agricultural Soils of the Southern Subtropics,China[J]. HAO Rong~(1,2) WAN Hong-Fu~2 SONG Yan-Tun~3 JIANG Hong~4 PENG Shao-Lin~(3,*2) 1 South China Botanical Garden,Chinese Academy of Sciences,Guangzhou 510650 (China) 2 Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control,Guangdong Institute of Eco-Environment and Soil Sciences,Guangzhou 510650 (China) 3 School of Life Science,Sun Yat-Sen University,Guangzhou 510275 (China) 4 Conservation Biology Institute,260 SW Madison Ave.,Suite 106 Corvallis,OR 97333 (USA). Pedosphere. 2007(05)
本文編號:3274468
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/3274468.html
最近更新
教材專著