超重力強(qiáng)化技術(shù)在基于臭氧氧化工藝處理鄰苯二胺廢水中的應(yīng)用
發(fā)布時(shí)間:2020-10-31 10:20
Higee為超重力技術(shù)的簡(jiǎn)稱,是一種過程強(qiáng)化技術(shù)。最初由Ramshaw和Mallison于1971年提出用于分離過程。該技術(shù)通過使用能夠產(chǎn)生比地球重力場(chǎng)大幾個(gè)數(shù)量級(jí)的多相反應(yīng)器(Higee設(shè)備)來實(shí)現(xiàn)。因此,在這種反應(yīng)器內(nèi)流動(dòng)的氣體和液相反應(yīng)物能夠被破碎成極小的液滴和液膜。此外,對(duì)于氣-液反應(yīng)體系,氣體和液體湍流程度和界面更新頻率在超重力環(huán)境下也會(huì)得到強(qiáng)化。這些因素都能夠強(qiáng)化傳質(zhì)與混合性能。有機(jī)廢水的處理是許多化學(xué)工業(yè)中的主要挑戰(zhàn),特別是染料、藥物、油漆、肥料等生產(chǎn)工藝。這些工業(yè)生產(chǎn)過程中產(chǎn)生大量含有復(fù)雜的有機(jī)物的廢水,這些有機(jī)物不僅難以被生物降解,而且具有毒性,會(huì)對(duì)環(huán)境和生態(tài)構(gòu)成嚴(yán)重威脅。本論文采用超重力技術(shù)處理含鄰苯二胺(o-PDA)廢水。鄰苯二胺(o-PDA)作為一種芳香胺,是許多化學(xué)工業(yè)廢水中的主要成分。本論文提出采用臭氧氧化工藝來處理含有鄰苯二胺廢水。由于臭氧消耗速率較快,因此水溶液中的臭氧氧化過程主要受到臭氧-水體傳質(zhì)速率的限制。因此,本論文通過使用一種新型的超重力設(shè)備--定-轉(zhuǎn)子反應(yīng)器(RSR)來強(qiáng)化臭氧-水體的傳質(zhì)速率,從而提高o-PDA的降解效率(η)。同時(shí),由于臭氧的選擇性和在水中的溶解度低的問題,本論文還考察了其他的三種基于臭氧的氧化工藝:耦合使用臭氧和過氧化氫(O_3/H_2O_2)的工藝,耦合使用臭氧和亞鐵離子(O_3/Fe~(2+))的工藝和耦合使用臭氧和通過亞鐵離子激活過硫酸鹽(O_3/Fe2 + /PS)的催化氧化工藝來強(qiáng)化氧化性能,從而提高o-PDA的降解效率。本論文系統(tǒng)考察了在不同工藝下,不同操作參數(shù)對(duì)η,化學(xué)需氧量(COD)和氣相總體積傳質(zhì)系數(shù)(KGa)的影響。并分析比較在每個(gè)工藝方法中的最優(yōu)操作條件。此外,通過確定降解過程的中間產(chǎn)物,來以進(jìn)一步評(píng)價(jià)o-PDA降解的程度。并比較了攪拌釜反應(yīng)器(STR)和RSR對(duì)o-PDA降解的效果。通過本論文的研究,主要得到了以下結(jié)論:在單獨(dú)使用臭氧工工藝中,隨著初始pH值、進(jìn)口臭氧濃度(Ci)升高η隨之升高;隨著液體體積流量(L)的升高,η隨之降低;隨著溫度(T)和轉(zhuǎn)子轉(zhuǎn)速(N)的升高,η先升高后降低。最優(yōu)操作條件為:pH = 6.5和N =1000rpm。在該操作條件下,RSR中的η和COD降解率(CODR)要比STR高 109.0%和 114.0%。在O_3/H_2O_2工藝中,隨著o-PDA初始濃度升高(CAO),KGa也隨之升高,ηη隨之降低;隨著N的升高,η和KGa隨之升高;隨著T的升高,η和KGa先升高到達(dá)峰值后緩慢降低;隨著H_2O_2的濃度(CH_2O_2)升高,η呈現(xiàn)先升高后降低的趨勢(shì),而KGa一直為上升趨勢(shì)。對(duì)比實(shí)驗(yàn)結(jié)果顯示:O_3/H_2O_2工藝中的η,KGa和CODR分別要比單獨(dú)使用O_3工藝高出24.4, 31.6和25.2%。此外,通過分析中間產(chǎn)物揭示了 O_3/H_2O_2工藝的降解過程相對(duì)于單獨(dú)使用O_3得到了強(qiáng)化。在O_3/Fe~(2+)/PS工藝中,隨著PS的濃度(CPS)和N的升高,η隨之升高;隨著T,初始pH值和Fe~(2+)濃度(CFe~(2+))的升高,η先升高后降低。在同樣的操作條件下,O_3/Fe~(2+)/PS工藝中的η和CODR可以達(dá)到98.7和82.6%,而O_3/Fe~(2+)工藝中的η和CODR為84.4和68.3%。綜上所述,本論文提供一種氧化o-PDA和難降解有機(jī)物的過程強(qiáng)化方法。
【學(xué)位單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位年份】:2017
【中圖分類】:X78
【文章目錄】:
摘要
Abstract
Nomenclature
Chapter 1 Literature Review
1.1 Introduction
1.2 Overview of Process Intensification Technology
1.2.1 Principles and Categories of PI
1.3 Overview of Higee Technology
1.3.1 Characteristics and Principle of Higee devices
1.3.2 Gas-Liquid mass transfer in RPB
1.3.3 Fluid Flow in RPB
1.3.4 Limitations of RPB
1.3.5 Structure and Principle of RSR
1.4 Advanced Oxidation Processes (AOPs)
1.4.1 Chemical Oxidation by Ozone
1.4.2 Trend of Ozone-Based Oxidation processes
1.5 Structure and Properties of o-phenylenediamine (o-PDA)
1.5.1 Sources and Significance of o-PDA
1.5.2 Trend and Status of Treatment of o-PDA
1.6 Research Objectives
1.6.1 Main Objective
1.6.2 Specific Objectives
Chapter 2 Treatment of Wastewater Containing o-PDA by Ozone in an RSR
2.1 Introduction
2.2 Experimental Section
2.2.1 Apparatuses and Reagents
2.2.2 Experimental Procedure
2.3 Oxidation Mechanism of o-PDA by Ozone
2.4 Analytical Methods
2.5 Results and Discussion
2.5.1 Effect of Initial pH
2.5.2 Effect of Rotation Speed
2.5.3 Effect of Liquid Volumetric Flow Rate
2.5.4 Effect of Temperature
2.5.5 Effect of Inlet Ozone Concentration
2.6 Comparison Experiment
2.7 Summary
Chapter 3 Ozonation of o-PDA in the Presence of Hydrogen Peroxide in anRSR
3.1 Introduction
3/H2O2'> 3.2 Ozonation Mechanism of o-PDA by O3/H2O2
3.3 Experimental Section
3.3.1 Materials and Procedure
3.4 Analytical Methods
3.5 Determination of Gas Phase Overall Volumetric Mass Transfer Coefficient
3.6 Results and Discussion
2 O2 Concentration'> 3.6.1 Effect of H2O2 Concentration
3.6.2 Effect of Initial o-PDA Concentration
3.6.3 Effect of Initial pH
3.6.4 Effect of Rotation Speed
3.6.5 Effect of Reaction Temperature
3.7 Comparison Experiment
3.8 Degradation Products
3.9 Summary
Chapter 4 Catalytic Ozonation of o-PDA with Persulfate ions activated byFerrous ions in an RSR
4.1 Introduction
2+'> 4.2 Ozonation Mechanism in the Presence of Fe2+
4.3 Activation Mechanism of PS ion by Fe2+
4.4 Experimental Section
4.4.1 Materials and Procedure
4.5 Analytical Methods
4.6 Results and Discussion
2+ Concentration'> 4.6.1 Effect of Fe2+ Concentration
4.6.2 Effect of Initial pH
4.6.3 Effect of PS Concentration
4.6.4 Effect of Rotation Speed of RSR
4.6.5 Effect of Temperature
4.7 Comparison Experiment
4.8 Intermediate Products of Degradation
4.9 Summary
Chapter 5 Conclusions and Suggestions
5.1 Conclusions
5.2 Suggestions
References
Acknowledgement
Research Publications
Introduction of Author and Supervisor
附件
【參考文獻(xiàn)】
本文編號(hào):2863817
【學(xué)位單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位年份】:2017
【中圖分類】:X78
【文章目錄】:
摘要
Abstract
Nomenclature
Chapter 1 Literature Review
1.1 Introduction
1.2 Overview of Process Intensification Technology
1.2.1 Principles and Categories of PI
1.3 Overview of Higee Technology
1.3.1 Characteristics and Principle of Higee devices
1.3.2 Gas-Liquid mass transfer in RPB
1.3.3 Fluid Flow in RPB
1.3.4 Limitations of RPB
1.3.5 Structure and Principle of RSR
1.4 Advanced Oxidation Processes (AOPs)
1.4.1 Chemical Oxidation by Ozone
1.4.2 Trend of Ozone-Based Oxidation processes
1.5 Structure and Properties of o-phenylenediamine (o-PDA)
1.5.1 Sources and Significance of o-PDA
1.5.2 Trend and Status of Treatment of o-PDA
1.6 Research Objectives
1.6.1 Main Objective
1.6.2 Specific Objectives
Chapter 2 Treatment of Wastewater Containing o-PDA by Ozone in an RSR
2.1 Introduction
2.2 Experimental Section
2.2.1 Apparatuses and Reagents
2.2.2 Experimental Procedure
2.3 Oxidation Mechanism of o-PDA by Ozone
2.4 Analytical Methods
2.5 Results and Discussion
2.5.1 Effect of Initial pH
2.5.2 Effect of Rotation Speed
2.5.3 Effect of Liquid Volumetric Flow Rate
2.5.4 Effect of Temperature
2.5.5 Effect of Inlet Ozone Concentration
2.6 Comparison Experiment
2.7 Summary
Chapter 3 Ozonation of o-PDA in the Presence of Hydrogen Peroxide in anRSR
3.1 Introduction
3/H2O2'> 3.2 Ozonation Mechanism of o-PDA by O3/H2O2
3.3.1 Materials and Procedure
3.4 Analytical Methods
3.5 Determination of Gas Phase Overall Volumetric Mass Transfer Coefficient
3.6 Results and Discussion
2
3.6.2 Effect of Initial o-PDA Concentration
3.6.3 Effect of Initial pH
3.6.4 Effect of Rotation Speed
3.6.5 Effect of Reaction Temperature
3.7 Comparison Experiment
3.8 Degradation Products
3.9 Summary
Chapter 4 Catalytic Ozonation of o-PDA with Persulfate ions activated byFerrous ions in an RSR
4.1 Introduction
2+'> 4.2 Ozonation Mechanism in the Presence of Fe2+
4.4.1 Materials and Procedure
4.5 Analytical Methods
4.6 Results and Discussion
2+
4.6.2 Effect of Initial pH
4.6.3 Effect of PS Concentration
4.6.4 Effect of Rotation Speed of RSR
4.6.5 Effect of Temperature
4.7 Comparison Experiment
4.8 Intermediate Products of Degradation
4.9 Summary
Chapter 5 Conclusions and Suggestions
5.1 Conclusions
5.2 Suggestions
References
Acknowledgement
Research Publications
Introduction of Author and Supervisor
附件
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 鄭紹軍;王瑜;朱瑞;谷永東;楊丹丹;蔡星偉;;人工合成類天然產(chǎn)物防污劑的研究進(jìn)展[J];中國腐蝕與防護(hù)學(xué)報(bào);2016年05期
2 孫潤林;向陽;楊宇成;鄒?;初廣文;邵磊;陳建峰;;超重力旋轉(zhuǎn)床液體流動(dòng)的可視化研究[J];高;瘜W(xué)工程學(xué)報(bào);2013年03期
3 張維;;流化床反應(yīng)器過程強(qiáng)化技術(shù)(英文)[J];Chinese Journal of Chemical Engineering;2009年04期
4 栗秀萍;劉有智;李志強(qiáng);王曉莉;;旋轉(zhuǎn)填料床連續(xù)精餾實(shí)驗(yàn)研究(英文)[J];Chinese Journal of Chemical Engineering;2008年04期
5 ;SYNTHESIS AND APPLICATION OF NANOPARTICLES BY A HIGH GRAVITY METHOD[J];China Particuology Science and Technology of Particles;2005年Z1期
6 張軍,郭鍇,郭奮,竺潔松,鄭沖;旋轉(zhuǎn)床內(nèi)液體流動(dòng)的實(shí)驗(yàn)研究[J];高校化學(xué)工程學(xué)報(bào);2000年04期
本文編號(hào):2863817
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2863817.html
最近更新
教材專著