刺槐中慢生根瘤菌對(duì)銅的吸附特性及抗性機(jī)制研究
發(fā)布時(shí)間:2020-10-14 00:42
本論文利用從中國(guó)甘肅省金屬尾礦分離到的根瘤菌作為生物吸附劑材料去除污染水體環(huán)境中的銅,系統(tǒng)的研究了銅耐受菌株的生物吸附特性和吸附機(jī)理,擬為重金屬污染環(huán)境的修復(fù)與治理提供新的材料和方法。 從甘肅省金屬尾礦區(qū)豆科植物刺槐根瘤中共分離得到73株根瘤菌,其中菌株CCNWGS0123對(duì)銅的抗性較高,它可在pH4.0和pH10.0的培養(yǎng)基上生長(zhǎng),耐6%濃度的氯化鈉,可利用琥珀酸鈉、丙酮酸鈉、丙二酸鈉、D-木糖、半乳糖、D-果糖、丙酸鈉、L-阿拉伯糖、D-核糖、鼠李糖、甘露糖、麥芽糖、檸檬酸鈉、醋酸鈉、葡萄糖、蔗糖、乳糖和肌醇為唯一碳源;利用半胱氨酸、L-天門冬酰胺、DL-α-氨基酸、L-甲硫氨酸、DL-組氨酸、天冬氨酸、丙氨酸、L-胱氨酸和L-谷氨酸為唯一氮源;能夠抗300μg/ml氨芐西林、300μg/ml氯霉素、100μg/ml卡那霉素、100μg/ml氨芐西林鈉、300μg/ml林可霉素、50μg/ml硫酸鏈霉素和5μg/ml丁胺卡那霉素;菌株CCNWGS0123可在含有2.2mM銅、0.1%甲基橙、0.2%溴酚藍(lán)、0.2%剛果紅和0.2%中性紅的培養(yǎng)基上生長(zhǎng);可在YMA上產(chǎn)過(guò)氧化氫;16S rRNA、nodA、nodC和nifH基因序列分析,確定該菌株屬于Mesorhizobium amorphae。 在菌株CCNWGS0123對(duì)銅離子的吸附特性研究中發(fā)現(xiàn),其活細(xì)胞和死細(xì)胞均可作為一種生物吸附劑去除水溶液中銅污染;在pH為5.0,轉(zhuǎn)速為150rpm,溫度為28°C時(shí),銅的去除率最高,30分鐘到達(dá)吸附平衡。吸附等溫線擬合表明,Langmuir方程比Freundlich吸附式更適于擬合吸附過(guò)程。在菌體接種量為100mg/l和銅離子初始濃度為0.5g/l時(shí),銅離子的去除率最高。傅立葉紅外光譜(FT-IR)分析表明,細(xì)胞壁上O-H、N-H、C-H、C=O、-NH、-CN、C-N、C-O、酰胺(-I、-II、-III)、不飽和烯烴、烷基和芳香團(tuán)等官能團(tuán)參與了菌體和銅的相互作用。掃描電鏡(SEM)顯示,銅脅迫下細(xì)胞出現(xiàn)變形、聚集及細(xì)胞表面受損等現(xiàn)象。X-射線掃描能譜(EDX)分析結(jié)果顯示,在1.1keV,8.1keV和8.9keV處出現(xiàn)了三個(gè)明顯的吸收峰,表明細(xì)胞表面有銅的吸附。此外,銅的富集與細(xì)胞生長(zhǎng)和生物量的增加有關(guān),菌株是可能通過(guò)產(chǎn)生胞內(nèi)多糖,將銅離子固定在細(xì)胞內(nèi),或通過(guò)在細(xì)胞外和細(xì)胞壁上分泌化合物螯合銅離子。 本研究是用M. amorphae CCNWGS0123作為銅離子吸附劑的首次研究,該菌株不僅可與刺槐作為共生固氮促進(jìn)植物生長(zhǎng),改善土壤營(yíng)養(yǎng)條件,還可以作為生物修復(fù)體系去除污染土壤中的銅。該研究系統(tǒng)的闡明了CCNWGS0123作為吸附劑移除銅離子特性和機(jī)制,發(fā)現(xiàn)使用少量的菌體(活細(xì)胞和死細(xì)胞)進(jìn)行生物吸附去除水體中的銅是一個(gè)經(jīng)濟(jì)、環(huán)保的途徑,可用于水體污染處理材料。
【學(xué)位單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位年份】:2012
【中圖分類】:X703;X172
【文章目錄】:
ABSTRACT
摘要
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF SYMBOLS / ABBREVIATIONS
CHAPTER I REVIEW OF LITERATURE AND AIM OF STUDY
1.1 Heavy metal pollution
1.2 Copper
1.3 Heavy metal treatment technique
1.4 Brief view on conventional waste stream treatments
1.5 Bio-based methods for waste water treatment and environment restoration
1.6 Quantifying metal-biomass interaction
1.6.1 Sorption isotherms
1.7 Biosorption mechanism
1.8 Instrumental analysis of heavy metal binding
1.8.1 Fourier Transform-Infrared Spectroscopy (FT-IR)
1.8.2 Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDX)
1.9 Factor affecting biosorption
1.9.1 Initial solute concentration
1.9.2 Dosage
1.9.3 pH
1.9.4 Agitation speed
1.9.5 Temperature
1.10 Future thrusts in biosorption
1.11 Aim of study
CHAPTER II ISOLATION AND CHARACTEZATION OF HEAVY METALRESISTANT STRAIN CCNWGS0123 ISOLATED FROM ROOTNODULE OF MINE TAILINGS IN CHINA
2.1 Introduction
2.2 Materials & Methods
2.2.1 Isolation of Rhizobium strains from contaminated soils
2.2.2 Screening test for heavy metal-resistant strains
2.2.3 Characterization and identification of isolated strain
2.2.4 Phytoremediation
2.3 Results and Discussion
2.3.1 Isolation and screening of copper-resistant rhizobia
2.3.2 Characterization and identification of strain CCNWGS012328
2.3.3 Effects of copper on the symbiotic interaction of M. amorphae CCNWGS0123 strain
2.4 Conclusion
CHAPTER Ⅲ BIOSORPTION OF COPPER (II) FROM AQUEOUS SOLUTION USINGLIVING AND NON LIVING MESORHIZOBIUM AMORPHAE STRAINCCNWGS0123
3.1 Introduction
3.2 Materials and Methods
3.2.1 Preparation of the bacterial biosorbents and copper stock solution
3.2.2 Effect of initial copper concentration and biosorption dose
3.2.3 Effect of pH, agitation speed and temperature on biosorption process
3.2.4 Biosorption Isotherm
3.2.5 Time-course of biosorption
3.3 Results and Discussion
3.3.1 Initial copper concentration
3.3.2 Dosage
3.3.3 Influence of pH
3.3.4 Effects of agitation speed
3.3.5 Effects of temperature
3.3.6 Biosorption Isotherm
3.3.7 Time course biosorption
3.4 Conclusions
CHAPTER Ⅳ THE MECHANISM OF COPPER BIOSORPTION AND BIOACCUMULATION BY CCNWGS0123 STRAIN
4.1 Introduction
4.2 Martial & Methods
4.2.1 Study with Fourier Transform Infrared spectroscopy (FT-IR)
4.2.2 Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Scanning (EDX) Analysis
4.2.3 Bioaccumulation of copper in MesorhizobiumAmorphae CCNWGS0123
4.3 Results and Discussion
4.3.1 FT-IR analysis
4.3.2 SEM/ EDX analysis
4.3.3 Cu (Ⅱ) Bioaccumulation
4.4 Conclusion
REFERENCES
APPENDIX A
APPENDIX B
PERSONAL STATMENT
【參考文獻(xiàn)】
本文編號(hào):2839925
【學(xué)位單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位年份】:2012
【中圖分類】:X703;X172
【文章目錄】:
ABSTRACT
摘要
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF SYMBOLS / ABBREVIATIONS
CHAPTER I REVIEW OF LITERATURE AND AIM OF STUDY
1.1 Heavy metal pollution
1.2 Copper
1.3 Heavy metal treatment technique
1.4 Brief view on conventional waste stream treatments
1.5 Bio-based methods for waste water treatment and environment restoration
1.6 Quantifying metal-biomass interaction
1.6.1 Sorption isotherms
1.7 Biosorption mechanism
1.8 Instrumental analysis of heavy metal binding
1.8.1 Fourier Transform-Infrared Spectroscopy (FT-IR)
1.8.2 Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDX)
1.9 Factor affecting biosorption
1.9.1 Initial solute concentration
1.9.2 Dosage
1.9.3 pH
1.9.4 Agitation speed
1.9.5 Temperature
1.10 Future thrusts in biosorption
1.11 Aim of study
CHAPTER II ISOLATION AND CHARACTEZATION OF HEAVY METALRESISTANT STRAIN CCNWGS0123 ISOLATED FROM ROOTNODULE OF MINE TAILINGS IN CHINA
2.1 Introduction
2.2 Materials & Methods
2.2.1 Isolation of Rhizobium strains from contaminated soils
2.2.2 Screening test for heavy metal-resistant strains
2.2.3 Characterization and identification of isolated strain
2.2.4 Phytoremediation
2.3 Results and Discussion
2.3.1 Isolation and screening of copper-resistant rhizobia
2.3.2 Characterization and identification of strain CCNWGS012328
2.3.3 Effects of copper on the symbiotic interaction of M. amorphae CCNWGS0123 strain
2.4 Conclusion
CHAPTER Ⅲ BIOSORPTION OF COPPER (II) FROM AQUEOUS SOLUTION USINGLIVING AND NON LIVING MESORHIZOBIUM AMORPHAE STRAINCCNWGS0123
3.1 Introduction
3.2 Materials and Methods
3.2.1 Preparation of the bacterial biosorbents and copper stock solution
3.2.2 Effect of initial copper concentration and biosorption dose
3.2.3 Effect of pH, agitation speed and temperature on biosorption process
3.2.4 Biosorption Isotherm
3.2.5 Time-course of biosorption
3.3 Results and Discussion
3.3.1 Initial copper concentration
3.3.2 Dosage
3.3.3 Influence of pH
3.3.4 Effects of agitation speed
3.3.5 Effects of temperature
3.3.6 Biosorption Isotherm
3.3.7 Time course biosorption
3.4 Conclusions
CHAPTER Ⅳ THE MECHANISM OF COPPER BIOSORPTION AND BIOACCUMULATION BY CCNWGS0123 STRAIN
4.1 Introduction
4.2 Martial & Methods
4.2.1 Study with Fourier Transform Infrared spectroscopy (FT-IR)
4.2.2 Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Scanning (EDX) Analysis
4.2.3 Bioaccumulation of copper in MesorhizobiumAmorphae CCNWGS0123
4.3 Results and Discussion
4.3.1 FT-IR analysis
4.3.2 SEM/ EDX analysis
4.3.3 Cu (Ⅱ) Bioaccumulation
4.4 Conclusion
REFERENCES
APPENDIX A
APPENDIX B
PERSONAL STATMENT
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 ;Biosorption of Cu(Ⅱ) on extracellular polymers from Bacillus sp.F19[J];Journal of Environmental Sciences;2008年11期
本文編號(hào):2839925
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2839925.html
最近更新
教材專著