磷酸鋯復(fù)鹽的微波制備和可見光催化印染廢水的應(yīng)用
[Abstract]:Photocatalysis is a technology for converting sunlight energy into chemical energy and electric energy, and can directly utilize sunlight to degrade various pollutants in water, and has the advantages of low cost, no pollution, no selectivity and reusability and the like. Photocatalytic degradation of printing and dyeing wastewater is a simple and convenient method. However, the commonly used photocatalyst is a wide forbidden zone semiconductor material, and the catalyst has photocatalysis effect only under ultraviolet light, and natural light can not be efficiently utilized. Aiming at the above problems, a visible light photocatalyst is prepared into a core problem in the photocatalysis field. In this paper, two kinds of materials, namely nickel phosphate, nickel phosphate and manganese phosphate were prepared under the open system by microwave-assisted heating, and the best raw materials and technological conditions for preparing manganese phosphate and manganese phosphate were investigated. In this paper, a variety of surfactants are used as template agents to prepare nickel phosphate and manganese phosphate by microwave heating under certain conditions such as pH value and temperature. The effects of phosphorus source, reactant ratio, reactant concentration, reaction pH value, reaction temperature and three kinds of surfactant PVP-K30, CTAB and SDS on the preparation of nickel phosphate and manganese phosphate were discussed. XRD, ICP, XPS, SEM (FESEM), TG and UV-Vis, etc. were used to characterize the contents, elemental contents, valence state, surface morphology, metal content and gap width of manganese phosphate and manganese phosphate. Using Zr OCl _ 2, NH _ 4F, Na H _ 2PO _ 4 and Ni Cl _ 2 as starting materials,[Zr4 +] in the reaction solution is 0. 005mol/ L, the concentration of the remaining reactants is mixed with the proportion of Zr: Ni: F: P = 1: 1: 6: 20. Three kinds of surfactants were added to the reaction solution respectively. 59g PVP-K30, 0.04g CTAB and 0. 29g SDS could be used to prepare nickel phosphate with regular morphology. Phosphorus source, reaction pH, reactant ratio and reactant concentration are important factors affecting the preparation of nickel phosphate. When the phosphorus source or the reaction pH value changes, the morphology of the product plume is observed. When the nickel-to-nickel ratio is higher than 3, the product is a spherical mixture. When the phosphorus-to-phosphorus ratio is less than 10, the morphology of the product plume is improved. When the fluorine content ratio is higher than 10, the product is nickel phosphate. When the concentration of the reactants is too high, the product is a mixture. and the reaction temperature and the surface active agent affect the particle size and the uniformity of the nickel phosphate, and have slight influence on the morphology. As the temperature of the reaction increased, the nickel-phosphate particles were gradually grown, the morphology was gradually regular, and the size was gradually uniform. After addition of the surfactant, the particle size of the product can be reduced. Among them, the inhibition ability of PVP-K30 and CTAB to particle size growth was larger than that of SDS. The addition of PVP-K30, CTAB and SDS as a template aid in the preparation of manganese phosphate, and various morphology can be obtained. The starting materials Zr OCl _ 2, NH _ 4F, Na H _ 2PO _ 4 and Mn Cl _ 2 were mixed at a ratio of Zr: Mn: F: P = 1: 1: 6: 20, respectively. The manganese phosphate prepared under the condition of PVP-K30 is spherical, and the manganese phosphate prepared under the CTAB condition is spherical, and the manganese phosphate prepared under the conditions of SDS is spherical. adding the prepared nickel phosphate and manganese phosphate into two dye solutions of a certain concentration of simulated printing and dyeing wastewater, reacting under photocatalysis for a certain time, measuring the absorbance corresponding to the maximum absorption wavelength, and calculating the decoloring rate of the dye, The photocatalytic properties of both organic pollutants under visible light were discussed. The results showed that the photocatalytic effect of nickel phosphate on MB was up to 49. 0%, and the photocatalytic effect of nickel phosphate on Rh B was up to 11. 3%. The photocatalytic effect of nickel phosphate on MB is better than Rh B. This may be influenced by the molecular structure of dyes, the molecular structure of MB is small, and it is favorable for adsorption to the catalytic degradation reaction on nickel phosphate. It is found that 路 OH, h ~ + and 路 O _ 2 ~-are active substances involved in dye degradation, and 路 OH is the main active material. The photocatalytic effect of manganese phosphate on Rh B was up to 18. 0%. The results showed that both nickel phosphate and manganese phosphate had certain visible light photocatalytic activity. In this paper, a microwave-assisted heating method was used to prepare various morphologies of nickel phosphate and manganese phosphate, and it was used to catalyze the degradation of Rh B or MB dyes by visible light. The results showed that nickel phosphate and manganese phosphate had visible photocatalytic activity. The microwave-assisted preparation method provided by the invention has the characteristics of mild reaction condition, simple operation and the like, is favorable for forming a product with regular appearance, and provides a reference for the preparation of related materials.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X791;O643.36
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;光催化分解硫化氫制氫研究獲進(jìn)展[J];化工進(jìn)展;2010年02期
2 ;光催化分解硫化氫制氫研究獲進(jìn)展[J];天津化工;2010年01期
3 ;光催化分解硫化氫制氫研究獲進(jìn)展[J];工業(yè)催化;2010年02期
4 蔡乃才,簡(jiǎn)翠英,董慶華;有機(jī)羧酸的光催化分解反應(yīng)[J];感光科學(xué)與光化學(xué);1988年04期
5 張誼華,,滕玉美,曾憲康,王涵慧,俞稼鏞;光催化分解硫化氫制取氫氣的研究[J];感光科學(xué)與光化學(xué);1994年02期
6 溫福宇;楊金輝;宗旭;馬藝;徐倩;馬保軍;李燦;;太陽(yáng)能光催化制氫研究進(jìn)展[J];化學(xué)進(jìn)展;2009年11期
7 張德;;有害的硫化氫污染物可經(jīng)光催化成有用的氫和硫[J];化學(xué)通報(bào);1982年05期
8 ;水洗再生型光催化除臭濾氣器[J];現(xiàn)代化工;2001年01期
9 甘欣;趙希娟;覃彪;傅文甫;;Pt(Ⅱ)配合物光催化制氫研究進(jìn)展[J];中國(guó)材料進(jìn)展;2010年01期
10 呂宏飛;李錦書;單雯妍;白雪峰;;多元金屬硫化物催化劑及光催化分解硫化氫的研究進(jìn)展[J];材料導(dǎo)報(bào);2012年11期
相關(guān)會(huì)議論文 前10條
1 李旦振;鄭宜;付賢智;;微波場(chǎng)助光催化及其應(yīng)用[A];中國(guó)電子學(xué)會(huì)第七屆學(xué)術(shù)年會(huì)論文集[C];2001年
2 殷好勇;金振聲;張順利;張治軍;;有機(jī)物分子的吸附及光催化分解對(duì)水接觸角的影響[A];2000'全國(guó)光催化學(xué)術(shù)會(huì)議論文集[C];2000年
3 付賢智;;環(huán)境光催化基礎(chǔ)與應(yīng)用研究進(jìn)展[A];第六屆全國(guó)環(huán)境催化與環(huán)境材料學(xué)術(shù)會(huì)議論文集[C];2009年
4 王崇明;;新時(shí)代——吹響了光催化號(hào)角[A];第二屆全國(guó)染整行業(yè)技術(shù)改造研討會(huì)論文集[C];2004年
5 葉云;王秀麗;馮兆池;李燦;;CdS QDs/Co complex光催化產(chǎn)氫體系的時(shí)間分辨光譜研究[A];第十七屆全國(guó)光散射學(xué)術(shù)會(huì)議摘要文集[C];2013年
6 付賢智;;環(huán)境光催化基礎(chǔ)與應(yīng)用研究新進(jìn)展[A];2004年全國(guó)太陽(yáng)能光化學(xué)與光催化學(xué)術(shù)會(huì)議論文集[C];2004年
7 吳季懷;林煜;黃妙良;林建明;黃昀方;殷澍;佐藤次雄;;層狀納米光催化復(fù)合材料HNbWO_6/Pt的合成和性質(zhì)[A];2000'全國(guó)光催化學(xué)術(shù)會(huì)議論文集[C];2000年
8 賀攀科;張敏;楊冬梅;董芳;楊建軍;;微波-二元醇技術(shù)制備Au/TiO_2及其光催化消除臭氧[A];中國(guó)化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(上冊(cè))[C];2006年
9 周航月;葛介超;汪鵬飛;;團(tuán)藻狀的Cd_(1-x)Zn_xS納米球:無(wú)模板法制備及其在可見光催化制氫應(yīng)用[A];第十三屆全國(guó)光化學(xué)學(xué)術(shù)討論會(huì)論文集[C];2013年
10 李越湘;呂功煊;李樹本;;草酸作電子給體光催化分解水制氫[A];2000'全國(guó)光催化學(xué)術(shù)會(huì)議論文集[C];2000年
相關(guān)重要報(bào)紙文章 前2條
1 記者 吳長(zhǎng)鋒;光催化分解水制氫氣展現(xiàn)迷人前景[N];科技日?qǐng)?bào);2013年
2 蔡維希 蔡忠仁;光催化分解廠房有機(jī)污染物項(xiàng)目實(shí)施[N];中國(guó)化工報(bào);2006年
相關(guān)博士學(xué)位論文 前10條
1 韋丁;硒化銦和鈦酸銦納微結(jié)構(gòu)調(diào)控與光催化制氫性能[D];北京理工大學(xué);2015年
2 伍明;氧化銀—氧化鋅復(fù)合物和改性的類石墨氮化碳的光催化性能研究[D];吉林大學(xué);2015年
3 高洪林;無(wú)機(jī)離子修飾提高g-C_3N_4光催化性能的研究[D];南京大學(xué);2014年
4 郎笛;硫化鎘光催化材料的制備及其可見光催化性能研究[D];華中農(nóng)業(yè)大學(xué);2016年
5 于笑瀟;分等級(jí)納米復(fù)合光催化材料的制備及其光催化性能研究[D];武漢理工大學(xué);2010年
6 陳秀芳;石墨相氮化碳的制備、表征及其光催化性能研究[D];福州大學(xué);2011年
7 鄭艷;鉍復(fù)合氧化物的合成及其可見光光催化性能研究[D];江南大學(xué);2011年
8 劉美英;鉭基氮氧化物上可見光光催化分解水制氫研究[D];中國(guó)科學(xué)院研究生院(大連化學(xué)物理研究所);2006年
9 徐新;水滑石基半導(dǎo)體復(fù)合材料的制備及其光催化性能研究[D];北京化工大學(xué);2011年
10 于鶴;SrTiO_3光催化材料光吸收邊調(diào)控及其光催化產(chǎn)氫性能研究[D];南京大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 李鑫;新型MoS_2/TiO_2復(fù)合材料的合成及光催化性能探究[D];上海師范大學(xué);2015年
2 王雋;釕基光敏劑的合成及其在TiO_2光催化體系中的催化性能研究[D];鄭州大學(xué);2015年
3 李云;上轉(zhuǎn)光劑-NaTaO_3-助催化劑體系在光催化水解制氫中的應(yīng)用及相關(guān)影響因素的研究[D];遼寧大學(xué);2015年
4 李宏穎;TiO_2@酵母微球的調(diào)控合成及其催化性能研究[D];長(zhǎng)安大學(xué);2015年
5 張亞軍;微納枝狀結(jié)構(gòu)ZnFe_2O_4的制備與改性及光催化性能研究[D];哈爾濱工業(yè)大學(xué);2015年
6 李孜;氮摻雜碳量子點(diǎn)的熒光分析檢測(cè)及光催化性能研究[D];北京化工大學(xué);2015年
7 張松;二氧化鈦光催化制氫的失活機(jī)理研究[D];南京大學(xué);2013年
8 劉輝;多孔SrTiO_3納米晶的制備及其光催化性能研究[D];南京大學(xué);2014年
9 徐鵬;介孔二氧化鈦基復(fù)合催化劑的制備及其光催化性能研究[D];吉首大學(xué);2015年
10 何靜;鉍氧化物及其復(fù)合物的制備與光催化性能研究[D];重慶大學(xué);2015年
本文編號(hào):2299256
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2299256.html