基于高頻在線水質(zhì)數(shù)據(jù)異常的突發(fā)污染預(yù)警
[Abstract]:Under the background of high frequency water quality automatic monitoring, the technology of water burst pollution early warning and prediction based on soft sensing and water quality time series anomaly detection is established. Assuming that the sudden pollution accident will cause the change of the typical automatic monitoring water quality parameters, the linear relationship between the water quality parameters and the on-line high frequency monitoring water quality parameters is established by regression analysis, and the short range water quality change is predicted by artificial neural network. The minimum threshold of abnormal judgment based on predicted residual error is established, and the sudden change detection of water quality is finally carried out by orderly supervised clustering to warn the sudden pollution accident. The online monitoring data of Potomac River watershed in Virginia are used for algorithm verification and case analysis. The analysis of the operating curve (ROC) showed that the detection accuracy of the method for 2 and 3 times abnormal level was 62.7% and 92.5%, respectively, and the accuracy rate increased with the increase of abnormal level. Usually, the concentration of specific pollutants in sudden pollution accidents is obviously higher than 3 times, and this method has a high accuracy. Compared with other technologies of water quality warning for sudden pollution, this technology can effectively shorten the average detection time and provide a new way for early warning and forecasting of river basin pollution and rapid emergency response.
【作者單位】: 哈爾濱工業(yè)大學(xué)環(huán)境學(xué)院;南方科技大學(xué)環(huán)境科學(xué)與工程學(xué)院;哈爾濱工業(yè)大學(xué)城市水資源與水環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室;
【基金】:中國(guó)博士后科學(xué)基金資助項(xiàng)目(2014M551249) 國(guó)家自然科學(xué)基金資助項(xiàng)目(51779066) 中央高;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)基金資助項(xiàng)目(HIT.NSRIF.2017060)
【分類號(hào)】:X832
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳京洪,楊秀環(huán),唐寶英,張展霞,李錦蓉;人工神經(jīng)網(wǎng)絡(luò)預(yù)報(bào)浮游植物生長(zhǎng)趨勢(shì)的研究[J];中山大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年06期
2 趙欣;人工神經(jīng)網(wǎng)絡(luò)應(yīng)用于大氣規(guī)劃的可能性[J];邯鄲職業(yè)技術(shù)學(xué)院學(xué)報(bào);2002年04期
3 葉正波;基于人工神經(jīng)網(wǎng)絡(luò)的區(qū)域經(jīng)濟(jì)子系統(tǒng)可持續(xù)發(fā)展指標(biāo)預(yù)測(cè)研究[J];浙江大學(xué)學(xué)報(bào)(理學(xué)版);2003年01期
4 何恩業(yè);李海;任湘湘;蔡怡;楊靜;;BP人工神經(jīng)網(wǎng)絡(luò)在渤海灣葉綠素預(yù)測(cè)中的應(yīng)用[J];海洋預(yù)報(bào);2008年02期
5 劉瑞霞;;人工神經(jīng)網(wǎng)絡(luò)在環(huán)境科學(xué)中的應(yīng)用[J];內(nèi)蒙古水利;2011年01期
6 張金萍;艾少偉;秦耀辰;張二勛;;人工神經(jīng)網(wǎng)絡(luò)在中國(guó)區(qū)域可持續(xù)發(fā)展研究中的應(yīng)用[J];河南大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年06期
7 劉俊威;呂惠進(jìn);;人工神經(jīng)網(wǎng)絡(luò)在水質(zhì)預(yù)測(cè)中的應(yīng)用研究[J];長(zhǎng)江科學(xué)院院報(bào);2012年09期
8 郭慶春;何振芳;李力;;基于人工神經(jīng)網(wǎng)絡(luò)的長(zhǎng)江水質(zhì)評(píng)價(jià)模型[J];信息技術(shù);2013年08期
9 郭宗樓,劉肇餳;人工神經(jīng)網(wǎng)絡(luò)在環(huán)境質(zhì)量評(píng)價(jià)中的應(yīng)用[J];武漢水利電力大學(xué)學(xué)報(bào);1997年02期
10 陳云浩,郭達(dá)志,趙勇;礦區(qū)環(huán)境優(yōu)化布點(diǎn)的人工神經(jīng)網(wǎng)絡(luò)模型[J];煤炭科學(xué)技術(shù);1999年07期
相關(guān)會(huì)議論文 前1條
1 張君;劉詠;商細(xì)彬;;人工神經(jīng)網(wǎng)絡(luò)在源解析中的應(yīng)用研究[A];惡臭污染防治研究進(jìn)展——第四屆全國(guó)惡臭污染測(cè)試與控制技術(shù)研討會(huì)論文集[C];2012年
相關(guān)碩士學(xué)位論文 前7條
1 趙培培;淮河中上游閘壩建設(shè)的水量水質(zhì)變化效應(yīng)研究[D];鄭州大學(xué);2017年
2 張夢(mèng)秋;基于軟測(cè)量的污水水質(zhì)預(yù)測(cè)系統(tǒng)[D];西北師范大學(xué);2016年
3 柳文波;改性普魯蘭復(fù)合吸附劑的表面特性及優(yōu)化研究[D];華中科技大學(xué);2014年
4 孫曉慧;基于人工神經(jīng)網(wǎng)絡(luò)的赤潮預(yù)測(cè)方法研究[D];浙江海洋學(xué)院;2012年
5 雷蕾;人工神經(jīng)網(wǎng)絡(luò)在大氣污染預(yù)報(bào)中的應(yīng)用研究[D];北京工業(yè)大學(xué);2007年
6 何t,
本文編號(hào):2258029
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2258029.html