里湖地下河N、S來源及其水-巖作用過程
[Abstract]:Groundwater is one of the main freshwater resources in the world. In karst areas, especially in the karst areas of Southwest China, groundwater has become a good source of water supply because of its relatively abundant reserves and excellent water quality. However, in recent years, reports of pollution of karst groundwater have only increased, including groundwater pollution caused by excessive nitrate and sulfate. It is urgent to control the deterioration of groundwater quality caused by excessive nitrate and sulfate. Therefore, it is very important to clarify the source of urban pollutants and reduce sulfate from the source. Rapid transformation, nitrate and sulfate pollution occur randomly, the mechanism process is complex, the way of dispersal and emission is uncertain, and also has the characteristics of long-distance migration, it is very difficult to trace the source, using a single index to identify its pollution source is often lack of pertinence and scientific, need to combine a variety of isotopes separately. At the same time, anthropogenic discharge of sulfuric acid and nitric acid into the underground river system participates in the process of water-rock interaction, resulting in spatio-temporal differences in the intensity of water-rock interaction, changing the composition of groundwater and its geochemical cycle, interfering with the carbon sink effect produced by carbonate dissolution carbonate rocks. In the study area, sulfur isotopes, nitrogen and oxygen isotopes were combined with traditional hydrochemical methods to analyze the composition of groundwater and its influencing factors, reveal the sources of sulfate and nitrate in the underground rivers of Lihu Lake, and estimate the intensity of water-rock interaction under the participation of sulfuric acid and nitric acid by hydrochemical methods. The hydrochemical type of the basin is HCO_3~-Ca. The geochemical composition of groundwater is controlled by the natural weathering and dissolution of carbonate rocks. Under the combined influence of artificial input, precipitation dilution and river self-purification, the ion concentrations in the dry season are higher than those in the rainy season. The spatial fluctuation of the groundwater is decreasing from upstream to downstream. It is inferred that SO_4~ (2-) in underground rivers is affected by urban sewage, chemical fertilizer and acid rain by the ratio of - 4.12 ~ - 0.93, and the value of 34 S is slightly higher in agricultural season than that in dry season, and the fluctuation is larger. It is possible that the groundwater is mixed with chemical fertilizers with relatively higher value of (34) S-SO_4 (2-); and the value of (15) N-HCO_3 82 Between, the average is 8.20, between - 6.71 ~77.04, the average is 12.58. Combined with the analysis of nitrate nitrogen and oxygen isotope composition, the source of HCO_3 - in underground rivers has obvious seasonal differences. The sources of HCO_3 - in January 2015 are complex. In May and October 2014, the groundwater HCO_3 - is mainly subject to synthetic fertilizers, human and animal manure, sewage and soil. In July 2015, the main source of nitrogen mixing was synthetic fertilizer and was affected by the high precipitation of (18)O-HCO_3~-. The groundwater (13)C-DIC was distributed between - 10.74 - 4.34, with an average value of - 7.36. The carbon isotope composition was affected by both natural carbonation and human input of sulfuric acid and nitric acid. In Nanshan, Wujiang and other places, the ratio of Ca~ (2+) + Mg~ (2+) / [HCO_3~-] equivalent in groundwater is between 1.12 and 1.56, [SO_4~ (2-) + HCO_3~-] / [HCO_3~-] ratio is between 0.11 and 0.50, indicating that sulfuric acid and nitric acid are involved in water-rock interaction. According to hydrochemical calculation, the proportion of carbonate dissolution carbonate rocks ranges from 28.04% to 78.55%, with an average of 50.01%. Affected by the time of water-rock interaction, the ratio of dissolution in dry season is larger than that in rainy season, and the spatial dissolution capacity is the strongest in the Xiaolong cave downstream; the ratio of sulfuric acid and nitric acid dissolution carbonate rocks ranges from 21.45% to 71.96%, with an average of 49.71%. Under the influence of agricultural activities, the strongest dissolution capacity appeared in May 2014, which was affected by the intensity of human activities and the self-purification of water. The dissolution intensity was generally shown in the upper reaches of agricultural activities and the lower reaches of industrial sewage discharge areas with less disturbance of human activities.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:X523;P641.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 裴建國,章程,謝運球,翁金桃;云霄洞地下河開發(fā)利用及洪澇災(zāi)害治理[J];中國巖溶;2000年02期
2 郭純青;中國巖溶地下河系及其水資源[J];水文地質(zhì)工程地質(zhì);2001年05期
3 謝運球,袁道先;地下河系統(tǒng)水土資源關(guān)系[J];水土保持學(xué)報;2002年06期
4 謝運球,裴建國;板文地下河系統(tǒng)內(nèi)澇[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);2002年04期
5 郭芳,姜光輝,裴建國,章程;廣西主要地下河水質(zhì)評價及其變化趨勢[J];中國巖溶;2002年03期
6 楊群興;;廣東黎水地下河開發(fā)利用研究[J];水文地質(zhì)工程地質(zhì);2006年03期
7 覃小群;蔣忠誠;李慶松;易連興;;廣西巖溶區(qū)地下河分布特征與開發(fā)利用[J];水文地質(zhì)工程地質(zhì);2007年06期
8 蒲俊兵;袁道先;蔣勇軍;;重慶市地下河的空間分布及水資源[J];水文地質(zhì)工程地質(zhì);2009年02期
9 鄒勝章;于曉英;盧海平;;基于自動監(jiān)測的柳州雞喇地下河水質(zhì)變化特征[J];中國巖溶;2011年01期
10 熊康寧;王恒松;李貴云;陳東升;;奔流在貴州地下的河[J];森林與人類;2013年07期
相關(guān)會議論文 前3條
1 ;世界級地下河待開發(fā)[A];廣州市老工程師協(xié)會論文集(第四輯)[C];2008年
2 劉景蘭;郭純青;;廣西巖溶地下河系初步研究[A];第三屆廣西青年學(xué)術(shù)年會論文集(自然科學(xué)篇)[C];2004年
3 盧慶林;;郴州萬華巖地下河—溶洞群形成背景及形成階段初探[A];飛天山丹霞地貌與生態(tài)旅游學(xué)術(shù)研討會論文集[C];2002年
相關(guān)重要報紙文章 前10條
1 本報記者 劉維;大西南:地下河的隱憂[N];地質(zhì)勘查導(dǎo)報;2007年
2 本報記者 張孔生;地下河連接市區(qū)3河道[N];揚州日報;2010年
3 蘇櫓萱;我國西南巖溶地下河有污染趨勢[N];中國國土資源報;2011年
4 特約記者 蘇櫓萱;地下河硝酸鹽超標(biāo)主因系農(nóng)家肥施用[N];中國國土資源報;2011年
5 張孔生;地上景觀路 地下活水流[N];揚州日報;2010年
6 陸漢魁;廣西發(fā)現(xiàn)串珠式巖溶地下河天窗群[N];中國國土資源報;2008年
7 本報通訊員 黃強(qiáng);把水留住[N];中國國土資源報;2011年
8 趙應(yīng)繁;鄂西南巖溶地區(qū)首次找到地下河[N];中國國土資源報;2008年
9 本報記者 藍(lán)鋒 本報通訊員 李雪松;都安有條“世界級”地下河[N];廣西日報;2013年
10 王琴;貴州地礦局大做“水”文章[N];中國礦業(yè)報;2005年
相關(guān)博士學(xué)位論文 前3條
1 裴建國;寨底地下河系統(tǒng)水質(zhì)演化趨勢及碳匯通量分析[D];中國地質(zhì)大學(xué)(北京);2012年
2 蒲俊兵;重慶市地下河發(fā)育、分布的控制機(jī)制及水文地球化學(xué)區(qū)域特征研究[D];西南大學(xué);2011年
3 藍(lán)家程;巖溶地下河系統(tǒng)中多環(huán)芳烴的遷移、分配及生態(tài)風(fēng)險研究[D];西南大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 梁作兵;基于脂肪酸示蹤巖溶地下河中DOM來源及遷移、變化特征[D];西南大學(xué);2016年
2 李瑞;里湖地下河N、S來源及其水-巖作用過程[D];西南大學(xué);2016年
3 袁文昊;土壤微生物活動下的氮、磷變化及對地下河水質(zhì)的影響研究[D];西南大學(xué);2009年
4 郭芳;官村地下河流域氮流失及其影響因素研究[D];西南大學(xué);2008年
5 顏赫;巖溶槽谷區(qū)地下河的水質(zhì)特征對比研究[D];西南大學(xué);2014年
6 韋麗麗;巖溶地下河系統(tǒng)持久性有機(jī)污染物分布與遷移研究[D];西南大學(xué);2011年
7 曹嘉一弘;四川盆地盆周山地地下河發(fā)育分布規(guī)律統(tǒng)計分析[D];成都理工大學(xué);2013年
8 楊光照;巖溶山區(qū)高位地下河成庫條件研究[D];貴州大學(xué);2008年
9 胡大超;巖溶地下河雨季~(15)N同位素及微常量元素特征研究[D];西南大學(xué);2011年
10 薛倩倩;巖溶槽谷地下河系統(tǒng)動態(tài)變化及含水介質(zhì)各向異性對比研究[D];西南大學(xué);2014年
,本文編號:2179764
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2179764.html