廢舊紡織物在二氧化碳?xì)夥障铝呀夂蜌饣瘷C(jī)理研究
[Abstract]:As a kind of solid waste, waste textile has been paid more and more attention because of its large emission, high energy content and easy classification. The pyrolysis and gasification of waste textiles in CO2 atmosphere can not only make full use of high-energy feedstock, but also can effectively convert CO _ 2 and reduce greenhouse gas emissions in the atmosphere. In this paper, the pyrolysis and gasification characteristics and mechanism of waste textiles in CO2 atmosphere and the catalytic effect of catalysts on catalytic cracking and gasification process were studied to improve the catalytic pyrolysis and gasification characteristics of textile fabrics. The main work is as follows: firstly, in order to obtain the pyrolysis and gasification characteristics and mechanism of waste textiles in CO2 atmosphere, the pyrolysis and gasification characteristics of different waste textile fabrics (polyester, cotton and wool) were studied by thermogravimetric analyzer. The structural characteristics of coke were analyzed by scanning electron microscopy and Raman spectroscopy. The kinetic parameters of pyrolysis and gasification were calculated by using the shrinking nucleus model. The pyrolysis gas and liquid products of textile were analyzed by GC and GC-MS. The results show that the pyrolysis and gasification characteristics (including the type and content of the products) of the three textile fabrics are different due to the different types of textile fabrics, such as polyester, The highest relative contents of cotton and wool pyrolysis products were benzoic acid (C7H6O2), acetic acid (C2H4O2) and cyanoethane (C3H5N), and the reaction kinetics and thermodynamics of the two processes were also different. The activation energies of decomposition of cotton and wool were 162.4 kJ / mol 103.1 KJ / mol and 110.0 KJ / mol, respectively, and the corresponding gasification activation energy of char were 178.2 kJ / mol 144.5 kJ / mol and 79.4 kJ / mol / mol, respectively. Furthermore, in order to enhance the kinetics of pyrolysis and gasification of waste textiles in CO2 atmosphere, the effects of various catalysts on waste textile (polyester) were studied by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The catalytic cracking and gasification characteristics of waste textile under different catalyst content and reaction temperature were analyzed. The results showed that 5 wt%ZnO had the best catalytic effect on the pyrolysis of textile and 5wt2O3 had the best catalytic effect on gasification. The activation energy of non-catalyst and supported 5wt%ZnO catalyst is 100.7kJ/mol and 65.1 KJ / mol, respectively. The activation energy of non-catalyst and supported 5wt2O3 catalyst in gasification process is 153.0kJ/mol and 89.0kJ / mol, respectively. Finally, in order to develop a catalyst suitable for both cracking and gasification, a Zn-Fe composite catalyst was prepared by coprecipitation method. It was found that the activation energy of decomposition and gasification reaction of textile was 57.1kJ/mol and 83.3 KJ / mol, respectively, which was better than that of single catalyst when there were complex catalysts in the cracking and gasification reactions. In this paper, the development of resource utilization technology of waste textile-CO _ 2 is discussed.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X705
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉冬冬;高繼慧;吳少華;秦裕琨;;熱解過程煤焦微觀結(jié)構(gòu)變化的XRD和Raman表征[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2016年07期
2 陳新明;閆姝;方芳;史紹平;穆延非;;基于IGCC的燃燒前CO_2捕集抽蒸汽策略研究[J];中國電機(jī)工程學(xué)報(bào);2015年22期
3 王晶博;郭晟;馮宇;柳敏;張靜;肖波;;熱重-質(zhì)譜聯(lián)用研究城市生活垃圾熱解特性[J];工業(yè)安全與環(huán)保;2015年04期
4 謝斐;王希;張春飛;王曉亮;;城市生活垃圾典型可燃組分熱解氣化動力學(xué)參數(shù)的實(shí)驗(yàn)研究[J];東方電氣評論;2014年04期
5 張春飛;王希;謝斐;;城市生活垃圾氣化技術(shù)研究進(jìn)展[J];東方電氣評論;2014年02期
6 張立靜;余渡江;黃群星;池涌;;我國城市固體廢棄物氣化熔融的特性[J];燃燒科學(xué)與技術(shù);2013年05期
7 朱穎;;城市生活垃圾氣化特性及動力學(xué)研究[J];中國資源綜合利用;2010年09期
8 高文學(xué);項(xiàng)友謙;王啟;劉淑玲;張于峰;;城市生活垃圾熱解氣化動力學(xué)參數(shù)的實(shí)驗(yàn)確定[J];天津大學(xué)學(xué)報(bào);2010年09期
9 王艾榮;陳剛;于麗娜;朱秀華;;淺析城市生活垃圾處理現(xiàn)狀與資源化對策[J];廣東化工;2010年07期
10 洪楠;于宏兵;薛旭方;王攀;展思輝;;餐廚垃圾中典型組分的裂解液化特征研究[J];環(huán)境工程學(xué)報(bào);2010年05期
相關(guān)博士學(xué)位論文 前1條
1 劉倩;基于組分的生物質(zhì)熱裂解機(jī)理研究[D];浙江大學(xué);2009年
相關(guān)碩士學(xué)位論文 前3條
1 劉彥國;煤與生物質(zhì)共氣化特性研究[D];重慶大學(xué);2013年
2 梁韜;基于Py-GC/MS的半纖維素?zé)崃呀鈾C(jī)理研究[D];浙江大學(xué);2013年
3 陳森;生物質(zhì)熱解特性及熱解動力學(xué)研究[D];南京理工大學(xué);2005年
,本文編號:2144879
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2144879.html