非均相催化—臭氧氧化降解愈創(chuàng)木酚的研究
本文選題:AlOOH + 臭氧 ; 參考:《天津科技大學(xué)》2017年碩士論文
【摘要】:木素作為造紙廢水中的主要污染物,愈創(chuàng)木酚(GL)是其中一種模型物,其結(jié)構(gòu)由三部分組成:苯環(huán)、羥基、甲氧基,作為一種有機(jī)污染物,運(yùn)用物理法、化學(xué)法、生物法等難以將這種污染物徹底降解,達(dá)到達(dá)標(biāo)排放。本實(shí)驗(yàn)選用非均相催化臭氧氧化技術(shù)對(duì)愈創(chuàng)木酚溶液進(jìn)行降解。在催化臭氧氧化的實(shí)驗(yàn)中催化劑的選擇是至關(guān)重要的,在本實(shí)驗(yàn)中需選擇合適的催化劑用于非均相催化臭氧氧化實(shí)驗(yàn)。在催化劑探究的過程中發(fā)現(xiàn),不同的催化劑催化臭氧氧化降解愈創(chuàng)木酚溶液的效果是有明顯區(qū)別的。通過γ-Al2O3和AlOOH兩種催化劑對(duì)愈創(chuàng)木酚溶液進(jìn)行催化降解以及動(dòng)力學(xué)分析,得到AlOOH催化臭氧氧化降解愈創(chuàng)木酚溶液的效果要明顯優(yōu)于γ-Al2O3。愈創(chuàng)木酚溶液經(jīng)AlOOH催化臭氧化降解后,愈創(chuàng)木酚的去除率能達(dá)到100%,溶液COD去除率能達(dá)到89.31%,而γ-Al2O3催化臭氧氧化降解愈創(chuàng)木酚溶液COD去除率僅僅能達(dá)到52.7%。催化劑的性能對(duì)催化臭氧化效果影響顯著,經(jīng)過γ-A]203和AlOOH兩種催化劑性能的測(cè)定發(fā)現(xiàn)它們的性能雖然區(qū)別很大,但它們之間存在著聯(lián)系,γ-Al2O3是山AlOOH在高溫下熱解得到的,也就是說AlOOH是γ-Al2O3的前驅(qū)體;比表面積分析發(fā)現(xiàn),AlOOH的比表面積要大于γ-Al2O3,大的比表面積有利于臭氧與有機(jī)物在其表面接觸反應(yīng),從而加強(qiáng)催化臭氧氧化的效果。催化臭氧氧化反應(yīng)中催化劑的引入主要為改善單獨(dú)臭氧化實(shí)驗(yàn)中臭氧的利用率不高、與有機(jī)物的反應(yīng)具有選擇性等不足。AlOOH能很好的促進(jìn)臭氧氧化的反應(yīng),愈創(chuàng)木酚溶液經(jīng)非均相催化臭氧氧化降解后效果要明顯優(yōu)于單獨(dú)臭氧化效果,且該過程中AlOOH對(duì)有機(jī)物的吸附作用基本為0。AlOOH催化臭氧氧化降解愈創(chuàng)木酚實(shí)驗(yàn)過程受多種因素的影響:臭氧進(jìn)氣流量、初始溶液pH、催化劑投加量、催化劑粒徑等,本實(shí)驗(yàn)運(yùn)用正交法對(duì)這些影響條件進(jìn)行了最優(yōu)化實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果發(fā)現(xiàn)在初始溶液pH為5.4、催化劑投加量為5 g/L、臭氧進(jìn)氣流量為0.51 L/min、臭氧濃度為13.32 mg/L條件下,愈創(chuàng)木酚溶液經(jīng)40 min反應(yīng)后,愈創(chuàng)木酚溶液去除率能達(dá)到100%, COD去除率能達(dá)到89.3%;而催化劑的粒徑對(duì)愈創(chuàng)木酚的降解效果影響很小,但是經(jīng)對(duì)不同研磨時(shí)間的AlOOH進(jìn)行粒徑分析、掃描電鏡分析發(fā)現(xiàn)研磨時(shí)間對(duì)粒徑的分布有一定的影響。若想把非均相催化臭氧氧化技術(shù)應(yīng)用于工業(yè)實(shí)際,反映前后AlOOH的性能的測(cè)定是至關(guān)重要的,通過粒徑分析儀、掃描電鏡、X射線衍射等對(duì)反應(yīng)前后AlOOH進(jìn)行了分析,發(fā)現(xiàn)催化劑經(jīng)過反應(yīng)后會(huì)發(fā)生些許改變,但是影響并不是很大。AlOOH催化臭氧氧化降解愈創(chuàng)木酚溶液的過程中,溶液由無色變?yōu)辄S色,判定有中間產(chǎn)物產(chǎn)生,通過液質(zhì)聯(lián)用、傅里葉變換紅外光譜可對(duì)中間產(chǎn)物進(jìn)行定性,推斷出實(shí)驗(yàn)過程中出現(xiàn)的兩種中間產(chǎn)物。愈創(chuàng)木酚溶液在非均相催化臭氧氧化反應(yīng)過程中,其結(jié)構(gòu)被破壞,產(chǎn)生了多種中間產(chǎn)物,這些物質(zhì)繼續(xù)被氧化才可礦化為CO2和H2O。AlOOH催化臭氧氧化反應(yīng)是遵循一定機(jī)理的,通過紫外可見光譜、液相圖譜和添加羥基自由基捕獲劑—叔丁醇(TBA)初步探討了催化臭氧氧化的降解機(jī)理,結(jié)果表明,在非均相催化臭氧氧化實(shí)驗(yàn)中,除了催化劑與臭氧反應(yīng)產(chǎn)生的單質(zhì)氧會(huì)直接氧化有機(jī)物,該反應(yīng)過程產(chǎn)生的羥基自由基對(duì)有機(jī)物的作用占據(jù)主導(dǎo)地位,且AlOOH表面的羥基基團(tuán)會(huì)促使反應(yīng)產(chǎn)生更多的羥基自由基。
[Abstract]:Lignin is one of the main pollutants in papermaking wastewater. Guaiacol (GL) is one of the models. Its structure is composed of three parts: benzene ring, hydroxyl group and methoxy. As a kind of organic pollutant, it is difficult to degrade the pollutant by physical method, chemical method, biological method and so on. This experiment selects heterogeneous catalytic ozone. Oxidation technology degrade guaiacol solution. In the experiment of catalytic ozonation, the selection of catalyst is very important. In this experiment, a suitable catalyst is selected for the heterogeneous catalytic ozonation experiment. In the process of catalyst exploration, it is found that different catalysts have been used to catalyze ozonation to degrade guaiacol solution. The effect is obviously different. Through the catalytic degradation and kinetic analysis of guaiacol solution by two kinds of catalysts, gamma -Al2O3 and AlOOH, the effect of AlOOH catalytic ozonization and degradation of guaiacol solution is obviously better than that of gamma -Al2O3. guaiacol solution after AlOOH catalyzed ozonation, and the removal rate of guaiacol can reach 100. %, the removal rate of COD in solution can reach 89.31%, while the COD removal rate of ozonization and degradation of guaiacol by gamma -Al2O3 can only reach the effect of 52.7%. catalyst on the catalytic ozonation. Through the determination of the properties of the two catalysts of gamma -A]203 and AlOOH, they are found to be different, but there is a relationship between them. Gamma -Al2O3 is obtained by pyrolysis of mountain AlOOH at high temperature, that is, AlOOH is a precursor of gamma -Al2O3, and the specific surface area analysis shows that the specific surface area of AlOOH is greater than that of gamma -Al2O3. The larger specific surface area is beneficial to the contact reaction between ozone and organic matter on its surface, thus enhancing the effect of catalytic ozonation oxidation. Catalyst for the catalytic ozonation reaction is used as a catalyst. The introduction is mainly to improve the low utilization of ozone in the separate ozonation experiment and the selectivity of the organic matter..AlOOH can promote the reaction of ozone oxidation well. The effect of the guaiacol solution after the heterogeneous catalytic ozonization is obviously superior to the single ozonation effect, and in this process, the AlOOH has a good effect on the organic matter. The experimental process of 0.AlOOH catalytic ozonation and degradation of guaiacol is influenced by various factors: the air flow rate of ozone, the initial solution pH, the dosage of the catalyst, the particle size of the catalyst and so on. In this experiment, the orthogonal method is used to optimize the conditions of these effects. The experimental results show that the initial solution pH is 5.4, and the catalyst is cast. The addition amount is 5 g/L, the ozonation flow rate is 0.51 L/min and the ozone concentration is 13.32 mg/L. After the 40 min reaction of the guaiacol solution, the removal rate of guaiacol can reach 100% and the COD removal rate can reach 89.3%, while the particle size of the catalyst has little effect on the degradation effect of guaiacol, but the particle size of the guaiacol is very small, but the particle size of the guaiacol is small, but the particle size of the guaiacol is small, but the particle size of the guaiacol is small, but the particle size of the guaiacol is small, but the particle size of the guaiacol is small, but the particle size of the guaiacol is small, but the particle size of the guaiacol is small. The diameter analysis and scanning electron microscopy (SEM) analysis found that the grinding time has a certain influence on the distribution of the particle size. If the heterogeneous catalytic ozonation technology is applied to industrial practice, the measurement of the properties of AlOOH before and after the reaction is very important. The particle size analyzer, scanning electron microscope, and X ray diffraction are used to analyze the AlOOH before and after the reaction. The chemical agent will change a little after the reaction, but the effect is not a big.AlOOH catalytic ozonation and degradation of guaiacol solution. The solution changes from colorless to yellow to determine the production of intermediate products. Through the liquid mass spectrometry, the Fu Liye transform infrared spectrum can be used to determine the intermediate products and to deduce the appearance of the experiment. Two intermediate products. In the process of heterogeneous catalytic ozonation, the structure of guaiacol was destroyed and a variety of intermediate products were produced. These substances continue to be oxidized to be mineralized to CO2 and H2O.AlOOH for ozonation, which follows a certain mechanism by ultraviolet visible spectrum, liquid phase atlas and hydroxyl radical addition. The capture agent - TERT butanol (TBA) preliminarily discussed the degradation mechanism of the catalytic ozonation. The results showed that in the heterogeneous catalytic ozonation experiment, the organic matter was oxidized directly by the elemental oxygen produced by the reaction of the catalyst and the ozone reaction. The hydroxyl radicals produced by this reaction process dominate the organic matter, and the surface of the AlOOH surface is on the surface. Hydroxyl groups can induce more hydroxyl radicals in the reaction.
【學(xué)位授予單位】:天津科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X793
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 畢可臻;;國(guó)內(nèi)造紙廢水處理方法研究進(jìn)展[J];杭州化工;2014年03期
2 王昶;梁曉霞;豆寶娟;王俊海;;γ-Al_2O_3催化臭氧氧化降解偶氮染料橙黃G的研究[J];環(huán)境工程;2014年04期
3 唐黎標(biāo);;生物技術(shù)在造紙廢水處理中的應(yīng)用[J];天津造紙;2013年04期
4 梁睿榮;顏幼平;姚興;;微濾-反滲透法深度處理造紙廢水運(yùn)行參數(shù)研究[J];資源節(jié)約與環(huán)保;2013年11期
5 李文鵬;任曉莉;項(xiàng)學(xué)敏;鄭學(xué)勝;楊鳳林;;微生物絮凝劑對(duì)造紙廢水的處理效果研究[J];工業(yè)水處理;2013年11期
6 周慧華;張安龍;趙登;羅清;張佳;;固定化漆酶深度處理制漿造紙廢水[J];水處理技術(shù);2013年09期
7 尚尉;涂強(qiáng);孫墨杰;;絮凝法深度處理造紙廢水[J];紙和造紙;2012年12期
8 江傳春;肖蓉蓉;楊平;;高級(jí)氧化技術(shù)在水處理中的研究進(jìn)展[J];水處理技術(shù);2011年07期
9 彭敏;;我國(guó)水資源存在的問題及對(duì)策[J];中國(guó)西部科技;2011年15期
10 孫貴軍;;我國(guó)水資源現(xiàn)狀及水土保持對(duì)策[J];現(xiàn)代農(nóng)業(yè)科技;2011年03期
相關(guān)碩士學(xué)位論文 前1條
1 衛(wèi)榮榮;不同AlOOH的結(jié)構(gòu)及其對(duì)催化性能影響的研究[D];太原理工大學(xué);2015年
,本文編號(hào):2096633
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2096633.html