橡膠促進劑生產(chǎn)廢水資源化利用技術(shù)研究
本文選題:橡膠促進劑生產(chǎn)廢水 + 預(yù)處理 ; 參考:《天津科技大學(xué)》2017年碩士論文
【摘要】:橡膠促進劑生產(chǎn)廢水的COD濃度大、鹽份含量高、可生化性差,且含有大量的難降解有機物。本文針對這一問題進行了研究,希望找到適合的治理橡膠促進劑廢水的方法。本文以橡膠促進劑生產(chǎn)廢水為主要研究對象,采用混凝-次氯酸鈉催化氧化工藝對該廢水進行預(yù)處理。預(yù)處理之后,蒸發(fā)出鹽。在混凝-NaClO催化氧化處理之前,先進行回收叔丁胺和加酸酸化的處理。實驗主要內(nèi)容及結(jié)論如下:(1)加酸酸化試驗,實驗結(jié)果表明:pH值為3,在曝氣條件下,反應(yīng)時間為100min時,COD去除率為26.09%。(2)混凝試驗,實驗結(jié)果表明:影響混凝處理效果因素的主次順序為:PAC投加量pH值PAM投加量;最佳運行條件為:pH值為8, PAC投加量為1000mg·L-1,PAM投加量為8mg·L-1。最佳運行條件下,對廢水的COD去除率為31.97%。(3) NaClO催化氧化試驗中,實驗結(jié)果表明:影響NaClO催化氧化處理效果因素的主次順序為:NaClO投加量活性炭用量反應(yīng)時間pH值;最佳運行條件為:pH值為4, NaClO投加量為10mL·L-1,活性炭用量為20g·L-1,反應(yīng)時間為1h。最佳運行條件下,對廢水的COD去除率為51.27%。綜合實驗結(jié)果,確定廢水的預(yù)處理工藝流程為:廢水→回收叔丁胺→加酸酸化→混凝→次氯酸鈉催化氧化。總的COD去除率可達76.25%,處理效果良好。(4)蒸發(fā)試驗中,實驗結(jié)果表明:影響冷凝液水質(zhì)的主要因素是有機物的揮發(fā)和劇烈沸騰時的蒸汽夾帶,從而導(dǎo)致蒸發(fā)前期和后期的冷凝液水質(zhì)較差而中期的冷凝液水質(zhì)較好,宜分段收集利用。所以在實際工程中,回用冷凝水時,盡量選取蒸發(fā)中期的冷凝水,避免蒸發(fā)前期和后期對回用冷凝水的污染。蒸發(fā)出的鹽中主要為NaCl且純度達99.542%,純度較高,鹽質(zhì)較白。
[Abstract]:The wastewater from rubber accelerator production is characterized by high COD concentration, high salt content, poor biodegradability and a large amount of refractory organic matter. In order to find a suitable treatment method for rubber accelerator wastewater, this paper studied this problem. In this paper, the wastewater from rubber accelerator production was pretreated by coagulation-sodium hypochlorite catalytic oxidation process. After pretreatment, salt is evaporated. Before the coagulation-NaClO catalytic oxidation treatment, the recovery of tert-butylamine and the addition of acid were carried out. The main contents and conclusions of the experiment are as follows: (1) adding acid test, the experimental results show that the removal rate of 100min is 26.09 when the aeration time is 100min and the pH value is 3. (2) Coagulation test. The experimental results show that the primary and secondary order of the factors affecting the coagulation effect is the dosage of 1000mg, pH, and the optimal operation conditions are as follows: the dosage of 1000mg L 1 and the dosage of 8mg L 1 are 8 and 8, respectively, and the optimum operating conditions are as follows: the dosage of 1000mg L 1 is 8, and the dosage of 1000mg L 1 is 8mg L 1. Under the optimum operating conditions, the COD removal rate of wastewater is 31.97. (3) in the experiment of catalytic oxidation of NaClO, the experimental results show that the order of factors affecting the treatment effect of NaClO catalytic oxidation is the pH value of reaction time when the dosage of activated carbon is added to NaClO; The optimum operating conditions were as follows: the pH value was 4, the dosage of NaClO was 10 mL / L ~ (-1), the dosage of activated carbon was 20 g / L ~ (-1) and the reaction time was 1 h. Under the optimum operating conditions, the COD removal rate of wastewater is 51.27. According to the experimental results, the pretreatment process of wastewater was determined as follows: the recovery of tert-butylamine from wastewater and the catalytic oxidation of sodium hypochlorite with acidated and acidated tert-butylamine. The total COD removal rate can reach 76.25, and the treatment effect is good. (4) in the evaporation test, the main factors that affect the water quality of condensate are the volatilization of organic matter and the vapor entrainment when boiling violently. As a result, the water quality of the condensate in the early and late stage of evaporation is poor, while the water quality in the middle stage is better, so it is appropriate to collect and utilize the condensate by stages. So in the practical engineering, the condensate water in the middle stage of evaporation should be chosen as far as possible when reusing condensate water, to avoid the pollution of the reused condensate water in the early and late stage of evaporation. The salt evaporated was mainly NaCl with a purity of 99.542 and a higher purity and whiter salt quality.
【學(xué)位授予單位】:天津科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X783.3
【參考文獻】
相關(guān)期刊論文 前10條
1 楊博;南昊;;我國水資源現(xiàn)狀及其安全對策研究[J];太原學(xué)院學(xué)報(自然科學(xué)版);2016年01期
2 易誠;湛含輝;程勝高;;混凝好氧顆粒污泥的絮凝劑選擇[J];環(huán)境工程學(xué)報;2014年10期
3 鄭安軍;施昌平;肖磊;康志磊;;“預(yù)處理+水解酸化+活性污泥法”處理再生紙廢水[J];環(huán)境工程;2013年S1期
4 蘇曉鋒;時鵬輝;許士洪;;混凝沉淀/水解酸化/氧化溝工藝處理造紙廢水[J];中國給水排水;2013年02期
5 郭鵬;覃茜;錢超宏;潘俊杰;杜春暉;;芬頓氧化法處理APMP制漿廢水的工程應(yīng)用[J];造紙科學(xué)與技術(shù);2012年06期
6 張哲;楊云龍;;磁絮凝技術(shù)深度處理焦化廢水的試驗研究[J];工業(yè)用水與廢水;2012年02期
7 酈建強;王建生;顏勇;;我國水資源安全現(xiàn)狀與主要存在問題分析[J];中國水利;2011年23期
8 楊麗英;孫素艷;酈建強;顏勇;;水資源可持續(xù)利用與水資源管理[J];中國水利;2011年23期
9 黃小紅;鄢敏林;石魯娜;;太湖原水凈化過程中有機物分子量分布特性研究[J];供水技術(shù);2011年06期
10 夏軍;翟金良;占車生;;我國水資源研究與發(fā)展的若干思考[J];地球科學(xué)進展;2011年09期
相關(guān)碩士學(xué)位論文 前1條
1 楊蒙蒙;三種鋁鹽混凝劑去除水中有機物特性的研究[D];蘭州交通大學(xué);2014年
,本文編號:2082224
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2082224.html