反硝化法降解污泥干化廢氣揮發(fā)性有機(jī)物研究
本文選題:VOCs + 反硝化 ; 參考:《揚(yáng)州大學(xué)》2017年碩士論文
【摘要】:污水廠剩余污泥干化過(guò)程會(huì)產(chǎn)生大量揮發(fā)性有機(jī)物(VOCs),影響大氣環(huán)境。針對(duì)污泥干化VOCs減排,本文提出了采用反硝化微生物降解污泥干化廢氣中VOCs的方法。通過(guò)試驗(yàn),研究了反硝化生物處理技術(shù)處理污泥干化廢氣VOCs的有效性,分析了抽吸風(fēng)量、干化廢氣中無(wú)機(jī)物等因素對(duì)VOCs處理的影響。主要結(jié)論如下:(1)針對(duì)剩余污泥干化廢氣VOCs去除,反硝化生物法明顯優(yōu)于普通生物法。在多組不同的干化溫度和進(jìn)氣濃度實(shí)驗(yàn)條件下,反硝化裝置都比好氧裝置對(duì)揮發(fā)性有機(jī)物的去除率高12-30%,能有效降低干化廢氣排入大氣中的VOCs總量。(2)研究發(fā)現(xiàn),試驗(yàn)采用的反硝化裝置內(nèi)同時(shí)發(fā)生生物反硝化作用和生物好氧作用。實(shí)驗(yàn)條件下,反硝化反應(yīng)在VOCs去除作用中占比為12-27%。(3)不同污泥干化溫度所產(chǎn)生的廢氣有機(jī)物組分不同,對(duì)普通生物處理裝置VOCs去除效率有明顯影響,但對(duì)反硝化裝置的影響較小。較高干化溫度下,廢氣VOCs種類(lèi)變多,其中含有更多的分子量較高的VOCs,有著更多的苯系物和酯類(lèi)物質(zhì),這些物質(zhì)有著更為穩(wěn)定的化學(xué)性質(zhì),更難被微生物代謝利用。對(duì)于一些種類(lèi)的VOCs,反硝化微生物比好氧微生物有更高的代謝利用能力。(4)干化廢氣中的氨氮基本轉(zhuǎn)移到液相并被好氧硝化作用轉(zhuǎn)化為硝態(tài)氮,這部分硝態(tài)氮也為反硝化反應(yīng)提供氮源。可以節(jié)省外加硝態(tài)氮的量。實(shí)驗(yàn)條件下,廢氣中的氨氣為反硝化反應(yīng)提供約40%的氮源。(5)干化廢氣抽吸風(fēng)量影響反硝化裝置的反硝化狀態(tài),當(dāng)抽吸風(fēng)量較大時(shí),裝置內(nèi)溶解氧濃度高,反硝化反應(yīng)受到抑制,裝置內(nèi)反硝化作用占比減少會(huì)導(dǎo)致VOCs去除率降低。(6)從干化廢氣VOCs成分分析結(jié)果可以看出,廢氣中VOCs中成分較為復(fù)雜,種類(lèi)繁多,其中藥物殘留成分較多,如醋酸潑尼松龍、倍氯米松、維醋酸氫化可的松等物質(zhì),也存在蓖麻油酸等表面活性劑物質(zhì)、二氯甲烷等涂料殘留物。
[Abstract]:A large number of volatile organic compounds (VOCs) will be produced during the drying process of excess sludge in wastewater treatment plants, which will affect the atmospheric environment. In view of the emission reduction of sludge drying VOCs, a method of denitrification microorganism was proposed to degrade VOCs from sludge drying waste gas. The effectiveness of denitrification biological treatment technology in treating VOCs from dry sludge waste gas was studied, and the effects of suction volume and inorganic substances in dry waste gas on the treatment of VOCs were analyzed. The main conclusions are as follows: (1) for the removal of VOCs from dry waste gas of excess sludge, the denitrification biological method is obviously superior to the ordinary biological method. Under the experimental conditions of different drying temperature and inlet concentration, the removal rate of volatile organic compounds by denitrification unit is 12-30% higher than that of aerobic unit, which can effectively reduce the total amount of VOCs discharged into the atmosphere by drying waste gas. (2) it is found that, Both biological denitrification and biological aerobic action occurred in the denitrification plant. Under the experimental conditions, the proportion of denitrification in VOCs removal was 12-27. (3) the organic components of waste gas produced by different sludge drying temperature had obvious influence on the removal efficiency of VOCs in common biological treatment plant, but had little effect on denitrification unit. At higher drying temperature, there are more kinds of VOCs in exhaust gas, which contain more VOCs with higher molecular weight, more benzenes and esters, which have more stable chemical properties and are more difficult to be metabolized by microorganisms. For some kinds of VOCs, denitrifying microorganisms have higher metabolic utilization ability than aerobic microbes. (4) ammonia nitrogen in dry waste gas is basically transferred to liquid phase and converted to nitrate by aerobic nitrification. This part of nitrate also provides nitrogen source for denitrification. The addition of nitrate can be saved. Under the experimental conditions, ammonia in waste gas provides about 40% nitrogen source for denitrification. (5) the amount of dry waste gas suction affects the denitrification state of the denitrification unit. When the suction volume is large, the dissolved oxygen concentration in the unit is high and the denitrification reaction is restrained. The decrease of the proportion of denitrification will lead to the decrease of VOCs removal rate. (6) from the analysis of VOCs in dried waste gas, it can be seen that the composition of VOCs in waste gas is more complex and varied, among which there are more drug residues, such as prednisolone acetate, Beclomethasone, hydrocortisone acetate and other substances, such as castor oil surfactant substances, dichloromethane and other paint residues.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:X701
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林堅(jiān);李琳;劉俊新;李美艷;;城市污水廠主要處理單元惡臭及揮發(fā)性有機(jī)物的逸散[J];環(huán)境工程學(xué)報(bào);2016年05期
2 賴(lài)永忠;;固相微萃取法同時(shí)分析源水中54種揮發(fā)性有機(jī)物[J];中國(guó)給水排水;2012年08期
3 陳穎;李麗娜;楊常青;郝鄭平;孫漢坤;李瑤;;我國(guó)VOC類(lèi)有毒空氣污染物優(yōu)先控制對(duì)策探討[J];環(huán)境科學(xué);2011年12期
4 周咪;王伯光;趙德駿;張春林;古穎綱;;城市污水處理廠惡臭揮發(fā)性羰基化合物的排放特征[J];環(huán)境科學(xué);2011年12期
5 唐小東;王伯光;趙德駿;劉舒樂(lè);何潔;馮志誠(chéng);;城市污水處理廠的揮發(fā)性惡臭有機(jī)物組成及來(lái)源[J];中國(guó)環(huán)境科學(xué);2011年04期
6 張義;高蓓;徐玉娟;溫婧;潘思軼;張名位;;頂空固相微萃取-氣質(zhì)聯(lián)用方法分析龍眼中的揮發(fā)性化合物[J];食品科學(xué);2010年16期
7 劉英;葉東;王建興;;污泥干燥機(jī)在污泥干化焚燒工藝中的應(yīng)用[J];廣州化工;2010年03期
8 王令凡;蔣國(guó)津;;生物滴濾床技術(shù)用于市政污水泵站除臭[J];中國(guó)給水排水;2009年20期
9 眭光華;李建軍;孫國(guó)萍;;城市污水處理廠惡臭污染源調(diào)查與研究[J];環(huán)境工程學(xué)報(bào);2008年03期
10 李居哲;;污水處理廠惡臭污染狀況分析與評(píng)價(jià)[J];污染防治技術(shù);2008年01期
相關(guān)碩士學(xué)位論文 前2條
1 唐小東;城市污水處理廠揮發(fā)性有機(jī)惡臭污染物的來(lái)源及感官定量評(píng)價(jià)[D];暨南大學(xué);2011年
2 劉瓚;污泥干燥處理中典型惡臭的釋放特點(diǎn)[D];浙江大學(xué);2007年
,本文編號(hào):2059499
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2059499.html