靜電紡絲納米纖維材料的制備及其對水中復合污染物的吸附研究
本文選題:靜電紡絲 + 吸附 ; 參考:《南京大學》2017年碩士論文
【摘要】:近些年,水體中復合污染物的高效去除已經(jīng)成為水環(huán)境治理過程中的研究熱點。吸附法作為一種簡單高效的水處理技術已經(jīng)在廢水治理領域得到廣泛應用,所用吸附材料多為活性炭基吸附劑、礦物質吸附劑、生物吸附劑和人工合成高分子聚合物。相比較傳統(tǒng)顆粒吸附材料,人工合成纖維狀吸附材料具有韌性好、吸附速率高、易分離等優(yōu)勢,愈來愈引起學者們的關注。雖然很多學者對此開展了大量的研究,取得了一定的進展,但依然存在以下問題需要進一步研究解決:1)現(xiàn)有纖維材料制備方法多為分子纖維材料基體接枝功能基團的非均相反應模式,反應過程與產(chǎn)率難以調(diào)控,且制備的纖維吸附材料難以同時吸附重金屬離子和小分子有機污染物;2)在復合污染體系中,不同污染物組分可能因吸附機理不同,在吸附材料之間存在著競爭-協(xié)同效應,而現(xiàn)有研究多針對單一組分體系吸附,并未能闡明復合污染體系中存在的競爭協(xié)同-效應;3)現(xiàn)有纖維吸附材料吸附方式多為固定床或靜態(tài)吸附模式,吸附過程中纖維存在打結、填柱不均勻的缺陷,導致吸附過程中纖維與污染物接觸不充分,影響吸附效果。因此研發(fā)新型雙功能纖維吸附材料去除復合污染物,闡明復合污染體系中的競爭協(xié)同作用機制具有重要的理論價值與現(xiàn)實意義;谏鲜鲅芯勘尘,論文研究制備新型巰基功能化介孔納米纖維與胺化聚丙烯腈/殼聚糖/聚乙烯醇纖維膜材料,以重金屬離子Cu~(2+)與內(nèi)分泌干擾物Cd~(2+)、BPA為目標污染物,深入開展吸附行為和機理研究:(1)利用均相聚合法和靜電紡絲技術制備新型含巰基的介孔纖維吸附材料(MNF-SH),研究表明新型巰基功能化納米纖維具有介孔結構和巰基功能基團,其比表面積為564.3 m2/g,孔容為0.495 cm3/g,其對Cu~(2+)最大平衡吸附量為5,431 mmol/g,吸附機理主要為巰基螯合作用;其對BPA的平衡吸附量為2.989 mmol/g,吸附機理主要為分子間作用力與氫鍵作用。且共存的硝酸根離子和氯離子會提高纖維對銅離子的吸附量,而降低對BPA的吸附;(2)以胺化反應、縮聚反應和靜電紡絲技術制備了新型胺化聚丙烯腈/殼聚糖/聚乙烯醇納米纖維膜(APAN/CS/PVA-NM),掃描電子顯微鏡和透射電子顯微鏡表征表明了纖維表面的大孔和介孔結構,胺化聚丙烯腈/殼聚糖/聚乙烯醇納米纖維膜的平均孔徑為1.5 μm。研究表明APAN/CS/PVA-NM對鎘離子的吸附主要是功能化基團之間的相互作用(螯合作用),而對雙酚A的吸附則不僅有功能化基團的相互作用(氫鍵作用),還有分子間作用力?梢圆捎媚V運行模式,吸附去除雙酚A和鎘離子,過濾條件(pH值、進水濃度和流量)會對去除效果產(chǎn)生明顯影響;(3)在Cu-BPA復合污染體系中,氫鍵作用和分子間作用力都對雙酚A的吸附有重要作用,而銅離子的吸附則主要依靠螯合作用。雖然在銅離子和雙酚A會競爭巰基吸附位點,但是APAN/CS/PVA-NM依然可以同時有效去除雙酚A和銅離子,與此同時,通過分子間作用力吸附到APAN/CS/PVA-NM上的雙酚A又可以螯合銅離子促進銅離子的吸附,連續(xù)吸附實驗也表明雙酚A類似橋聯(lián)作用螯合銅離子;(4)在Cd-BPA復合污染體系中,雙酚A的吸附主要是APAN氨基的氫鍵作用及CS/PVA的分子間作用力,鎘離子的吸附主要是螯合作用。鎘離子和雙酚A在同時吸附和連續(xù)吸附時會競爭APAN/CS/PVA-NM氨基的吸附位點。并且同時存在高濃度雙酚A會產(chǎn)生橋聯(lián)作用促進鎘離子的吸附。APAN/CS/PVA-NM對雙酚A和鎘離子的最佳吸附pH值為5.0,低于5.0,氫離子會與鎘離子競爭吸附位點不利于鎘離子的吸附,而高于5.0,則會使得酚羥基離子化影響雙酚A的吸附。
[Abstract]:In recent years, the efficient removal of compound pollutants in water has become a hot topic in the process of water environment treatment. As a simple and efficient water treatment technology, adsorption method has been widely used in the field of wastewater treatment. The adsorbents used are active carbon based adsorbents, mineral adsorbents, biosorption and synthetic high grades. Compared with traditional particle adsorption materials, artificial synthetic fibrous adsorbents have the advantages of good toughness, high adsorption rate and easy separation, which have aroused the attention of scholars. Although many scholars have carried out a lot of research and made some progress, there still exist the following problems to be further studied and solved: 1) now Most of the preparation methods of fiber materials are non homogeneous reaction modes of functional groups grafted on the matrix of molecular fiber material, and the reaction process and yield are difficult to be regulated, and the prepared fiber adsorbents are difficult to adsorb heavy metal ions and small molecular organic pollutants at the same time. 2) in the compound pollution system, the adsorption mechanism of different pollutants may not be attributed to the adsorption mechanism. In the same way, there is a competitive synergistic effect between the adsorbents, and the existing research is mostly aimed at the adsorption of single component system, and the competition synergy in the composite pollution system is not clarified. 3) the adsorption mode of the existing fiber adsorbents is mostly fixed bed or static adsorption mode, and the fiber exists in the process of adsorption and the filling column is inhomogeneous. Therefore, it is of great theoretical and practical significance to develop a new dual functional fiber adsorption material to remove compound pollutants and clarify the mechanism of competition synergy in the compound pollution system. Functionalized mesoporous nanofibers and amamination of Polyacrylonitrile / chitosan / polyvinyl alcohol fiber membrane materials, with heavy metal ions Cu~ (2+) and endocrine disruptors Cd~ (2+) and BPA as the target pollutants, have carried out a thorough study of adsorption behavior and mechanism. (1) a new mesoporous fiber adsorption material containing sulfhydryl group (MN) was prepared by homogeneous polymerization and electrostatic spinning technology (MN) F-SH), the study shows that the new mercapto functionalized nanofibers have mesoporous structure and sulfhydryl functional groups. The specific surface area of the nanofibers is 564.3 m2/g, Kong Rong is 0.495 cm3/g, and the maximum equilibrium adsorption capacity for Cu~ (2+) is 5431 mmol/g. The adsorption mechanism is mainly mercapto chelation, and the equilibrium adsorption capacity for BPA is 2.989 mmol/g, and the adsorption mechanism is mainly divided into two parts. The adsorption of copper ions and the adsorption of copper ions were increased by the coexisting nitrate and chlorine ions, and the adsorption of BPA was reduced. (2) a new amine polyacrylonitrile / chitosan / polyvinyl alcohol nanofiber membrane (APAN/CS/PVA-NM) was prepared by amination, polycondensation and electrospinning. Scanning electron microscopy and scanning electron microscopy were used. The transmission electron microscope (TEM) characterizing the large pore and mesoporous structure of the fiber surface, the average pore size of the amidated polyacrylonitrile / chitosan / polyvinyl alcohol nanofiber film is 1.5 m.. The study shows that the adsorption of APAN/CS/PVA-NM on the cadmium ion is mainly the interaction between the functional groups (chelating), while the adsorption of bisphenol A is not only active. The interaction of the energetic groups (hydrogen bonding) and intermolecular force. The membrane filtration operation mode can be used to remove bisphenol A and Cd ions. The filtration conditions (pH value, influent concentration and flow) will have a significant effect on the removal efficiency. (3) the adsorption of hydrogen bond and intermolecular force on the adsorption of bisphenol A in the Cu-BPA composite pollution system The adsorption of copper ions is mainly dependent on chelation. Although the copper ion and bisphenol A will compete for the sulfhydryl adsorption site, APAN/CS/PVA-NM can still effectively remove bisphenol A and copper ions simultaneously. At the same time, the bisphenol A adsorbed on APAN/CS/ PVA-NM by intermolecular force can chelate copper ions to promote copper ions. The adsorption of ions and continuous adsorption experiments also show that bisphenol A is similar to bridging chelating copper ions; (4) in the Cd-BPA composite pollution system, the adsorption of bisphenol A is mainly the hydrogen bond of APAN amino and the intermolecular force of CS/PVA, and the adsorption of cadmium ions is mainly chelation. For the adsorption site of APAN/CS/PVA-NM amino group, and the presence of high concentration of bisphenol A produces bridging action to promote the adsorption of cadmium ions, and the best adsorption pH value of.APAN/CS/PVA-NM for bisphenol A and cadmium ions is 5, which is lower than 5. Hydrogen ions will compete with cadmium ions and disadvantageous to the adsorption of cadmium ions, while higher than 5 will lead to phenol hydroxyl groups. The crystallization affects the adsorption of bisphenol A.
【學位授予單位】:南京大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ342.86;X703
【相似文獻】
相關期刊論文 前10條
1 U.Meyer,桑榆;靜電紡絲——一項令人感興趣的技術[J];國際紡織導報;2005年09期
2 楊恩龍;王善元;李妮;趙叢濤;;靜電紡絲技術及其研究進展[J];產(chǎn)業(yè)用紡織品;2007年08期
3 蘇丁倉;;新型熔融型靜電紡絲裝置[J];紡織器材;2008年S2期
4 魏詩輝;李風亭;李風亭;張冰如;;靜電紡絲技術及其在水處理中的應用[J];水處理技術;2009年10期
5 李山山;何素文;胡祖明;于俊榮;陳蕾;諸靜;;靜電紡絲的研究進展[J];合成纖維工業(yè);2009年04期
6 劉太奇;許遠秦;操彬彬;陳曦;;熔體靜電紡絲及其裝置的研究進展[J];新技術新工藝;2009年12期
7 薛花;熊杰;李妮;劉冠峰;;靜電紡絲工藝與裝置的研究進展[J];現(xiàn)代紡織技術;2010年02期
8 李鵬舉;李明忠;;絲素靜電紡絲技術的研究進展[J];現(xiàn)代絲綢科學與技術;2010年02期
9 郝明鳳;劉勇;鄧榮堅;丁玉梅;韓凌攀;楊衛(wèi)民;;典型材料的熔體靜電紡絲研究[J];工程塑料應用;2010年03期
10 任春華;林朝陽;葉亞莉;;在靜電紡絲技術中的聚合物進展[J];瀘天化科技;2010年02期
相關會議論文 前10條
1 溫賢濤;范紅松;譚言飛;曹紅丹;張興棟;;兩種靜電紡絲組織工程支架性能的比較研究[A];2004年中國材料研討會論文摘要集[C];2004年
2 朱晶心;邵惠麗;胡學超;;高濃度再生絲素蛋白水溶液的靜電紡絲[A];中國化學會第二十五屆學術年會論文摘要集(下冊)[C];2006年
3 馮亞凱;孟繁茹;;聚碳酸酯聚氨酯生物材料的靜電紡絲[A];2009年全國高分子學術論文報告會論文摘要集(下冊)[C];2009年
4 王策;;高性能靜電紡絲納米纖維的應用研究[A];2009年全國高分子學術論文報告會論文摘要集(下冊)[C];2009年
5 仰大勇;馬宏偉;;靜電紡絲與蛋白質微陣列[A];2009年全國高分子學術論文報告會論文摘要集(下冊)[C];2009年
6 劉雍;壽萬;董亮;王瑞;;氣泡靜電紡絲技術的原理及其纖維形貌研究[A];中國化學會第27屆學術年會第04分會場摘要集[C];2010年
7 張玉軍;陸春;陳平;李建豐;于祺;;溶劑在高壓靜電紡絲中的作用[A];2005年全國高分子學術論文報告會論文摘要集[C];2005年
8 萬玉芹;何吉歡;俞建勇;吳s,
本文編號:2058929
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2058929.html