天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

滯塵對(duì)城市植物光譜特征及含水量、色素濃度反演的影響

發(fā)布時(shí)間:2018-06-15 17:36

  本文選題:滯塵或不同滯塵量 + 植物反射光譜。 參考:《上海師范大學(xué)》2017年碩士論文


【摘要】:隨著我國(guó)經(jīng)濟(jì)的發(fā)展,城市化進(jìn)程的不斷加快,城市粉塵污染日益成為居民關(guān)注的空氣污染問題。植物不僅可通過覆蓋裸地、吸附、降低風(fēng)速等方式降低空氣中粉塵的濃度,并且植物滯留粉塵的能力在一定條件下具有永久性。雖然植物具有滯留粉塵的能力,但粉塵同樣會(huì)對(duì)植物產(chǎn)生影響。這已引起國(guó)內(nèi)外學(xué)者的廣泛關(guān)注,并成為了熱門研究課題之一。本文的研究數(shù)據(jù)主要為2016年4月初到8月底對(duì)不同城市功能區(qū)內(nèi)目標(biāo)樹種的冠層及葉片光譜(ASD光譜儀)、相應(yīng)的滯塵量數(shù)據(jù)(萬分之天平)、冠層和葉片雙尺度的含水量(烘烤法)和色素濃度數(shù)據(jù)(化學(xué)溶劑法)等;谏鲜鰯(shù)據(jù)本文首先分析了滯塵或不同滯塵量對(duì)植物反射光譜特征和紅邊位置的影響;接著分析了滯塵前后不同含水量水平及不同色素濃度等級(jí)下的葉片反射光譜特征變化;最后,在上述研究的基礎(chǔ)上分析了滯塵對(duì)植物含水量反演及色素濃度反演的影響。研究結(jié)果表明:(1)可見光波段對(duì)滯塵量變化的靈敏度最高,1450-1750nm波段次之,700-1350nm波段的植物反射光譜受不同滯塵量的影響最為穩(wěn)定——隨著滯塵量的增加而段降低。滯塵或不同滯塵量不會(huì)引起植被“紅邊”位置的移動(dòng)但其位置與植物種類有關(guān);“主峰”值與“次峰”值都會(huì)隨著滯塵量的增加而減小并且“主峰”位置與“次峰”位置的大小關(guān)系同樣同植物種類有關(guān)。不同滯塵量對(duì)葉片反射光譜的影響相對(duì)于冠層而言更加穩(wěn)定。相應(yīng)的研究結(jié)果可為不同城市功能區(qū)的植物種類識(shí)別或城市不同功能區(qū)粉塵污染程度的識(shí)別提供光譜支撐。(2)滯塵對(duì)不同含水量或不同色素濃度植物光譜的影響主要體現(xiàn)在改變反射光譜反射值和改變相鄰反射光譜間的間隔這兩方面。對(duì)于不同含水量而言,在750-1350nm波段之間,滯塵前后含水量對(duì)光譜的影響規(guī)律相對(duì)穩(wěn)定而且各含水量水平的反射光譜間的間隔相比較于其他波段都較大,即750-1350nm波段可很好地反映植被的含水量變化。對(duì)于不同色素含量而言,350-700nm和750-1350nm波段范圍能很好地反映植物色素濃度的變化。(3)對(duì)于葉片尺度而言:滯塵不會(huì)改變?nèi)~片EWT(等效水深度)、FWC(相對(duì)含水量)同各指數(shù)之間的相關(guān)性質(zhì),但其會(huì)改變兩者與各指數(shù)之間的相關(guān)系數(shù);滯塵會(huì)降低葉片EWT同各指數(shù)之間的相關(guān)系數(shù),而會(huì)增高葉片F(xiàn)WC同各指數(shù)之間的相關(guān)系數(shù);無論在無塵還是在有塵情況下,葉片EWT同各指數(shù)之間的相關(guān)系數(shù)都高于葉片F(xiàn)WC同各指數(shù)之間的相關(guān)系數(shù);這說明,EWT更能反映植物葉片的含水量情況。對(duì)于冠層尺度而言,由于冠層EWT同各指數(shù)之間的相關(guān)系數(shù)遠(yuǎn)低于FWC同各指數(shù)之間的相關(guān)系數(shù),因此FWC更能反映植物冠層的含水量情況。(4)不同樹種含水量指標(biāo)與各種光譜指數(shù)間相關(guān)系數(shù)不同并且滯塵對(duì)其的影響程度也不同。各樹種都存在與之含水量相關(guān)系數(shù)較高的光譜指數(shù)(“最適指數(shù)”),但在滯塵前后“最適指數(shù)”并非具有完全的一致性。除此之外,“最適指數(shù)”會(huì)隨著樹種的變化而變化即某一光譜指數(shù)不具備葉片含水量反演的普適性能力。對(duì)不同樹種同時(shí)進(jìn)行含水量反演,會(huì)增大研究的難度。(5)無論對(duì)于不同波段或是各指數(shù)而言,滯塵都不會(huì)改變各種色素同兩者之間的相關(guān)性質(zhì),但都會(huì)改變各種色素同各波段或各指數(shù)間的相關(guān)系數(shù)。對(duì)于葉綠素a和類胡蘿卜素而言滯塵會(huì)增高其與各波段之間的相關(guān)系數(shù),對(duì)于葉綠素b的影響,與葉綠素a和類胡蘿卜素正相反。無論是在有塵還是在無塵狀態(tài)下葉綠素a同各波段之間的相關(guān)系數(shù)都高于葉綠素b同各波段之間的相關(guān)系數(shù),葉綠素同各波段之間的相關(guān)系數(shù)高于類胡蘿卜素同各波段之間的相關(guān)系數(shù)。雖然滯塵對(duì)各色素同各指數(shù)間的相關(guān)系數(shù)的影響與所選的指數(shù)有關(guān),但就整體而言(平均變化),滯塵對(duì)其影響的規(guī)律與滯塵對(duì)波段的的影響規(guī)律相同。(6)滯塵會(huì)對(duì)葉片含水量反演和葉綠素濃度反演產(chǎn)生影響。在葉片含水量反演方面,滯塵對(duì)葉片含水量反演精度的影響與滯塵量有關(guān)。但總體上表現(xiàn)為:滯塵不僅會(huì)降低反演回歸模型的決定系數(shù),而且會(huì)增大估測(cè)模型RMSE值和RE值,并降低反演精度。而且不同建模指標(biāo)對(duì)滯塵量的變化的敏感度不同。滯塵對(duì)葉綠素濃度反演的影響呈現(xiàn)兩種變化情況:其一為增高反演精度;其二為降低反演精度;但增高程度遠(yuǎn)低于降低程度。滯塵對(duì)兩者的影響程度都與所選取的建模指標(biāo)有關(guān)。
[Abstract]:With the development of China's economy and the accelerating process of urbanization, urban dust pollution has become an increasingly important problem of air pollution. Plants can not only reduce the concentration of dust in the air by covering bare land, adsorbing and reducing wind speed, but the ability of plants to stay dust is permanent under certain conditions. There is the ability to detained dust, but dust also affects plants. This has aroused wide attention of scholars both at home and abroad, and has become one of the most popular research topics. The data of this paper are mainly the canopy and leaf spectrum (ASD spectrometer) of the target species in different urban functional areas from early April 2016 to the end of August, and the number of the corresponding dust amount. The water content (bake method) and pigment concentration data (chemical solvent method) on the double scale of canopy and leaf (chemical solvent method). Based on the above data, the effects of dust or different dust amount on the spectral characteristics and red edge position of plants were analyzed first, and the different water content levels and different pigment concentrations before and after the dust were analyzed. The effects of dust on the inversion of water content and pigment concentration in plants were analyzed on the basis of the above study. The results showed that: (1) the sensitivity of the visible light band to the change of dust accumulation was the highest, the 1450-1750nm band was the second, and the plant reflection spectrum in the 700-1350nm band was affected by different dust levels. The effect is most stable with the increase of dust retention. Dust or different dust amounts will not cause the movement of the "red edge" position of the vegetation, but its position is related to the plant species; the value of "main peak" and "sub peak" will decrease with the increase of the amount of dust and the relationship between the position of "main peak" and the position of "second peak" The effect of different dust amounts on leaf reflectance spectra is more stable than that of canopy. The corresponding results can provide spectral support for identification of plant species in different urban functional areas or identification of dust pollution in different functional areas of cities. (2) dust on different water content or different pigment concentrations. The effect of the spectrum is mainly reflected in the two aspects of changing the reflection spectrum of the reflection spectrum and changing the interval between adjacent reflectance spectra. For different water content, the influence of water content on the spectrum is relatively stable before and after the 750-1350nm band, and the interval between the reflectance spectra of each water content is compared to the other bands. Larger, that is, the 750-1350nm band can well reflect the changes in the water content of vegetation. For different pigments, the range of 350-700nm and 750-1350nm bands can well reflect the changes in plant pigment concentration. (3) for the leaf scale, the dust will not change the leaf EWT (equal water depth), FWC (relative water content) and the index of each index. Related properties, but it will change the correlation coefficient between the two and the index, which will reduce the correlation coefficient between the EWT and the index, and increase the correlation coefficient between FWC and the index. The correlation coefficient between the leaves EWT and the index is higher than that between the leaves FWC and the index in the dustless or dustless. Correlation coefficient; this shows that EWT can reflect the water content of plant leaves. For the canopy scale, the correlation coefficient between the canopy EWT and the index is far lower than the correlation coefficient between the FWC and the index, so FWC can reflect the water content of the plant canopy. (4) the water content index of different tree species and the various spectral indices The correlation coefficient is different and the influence degree of the dust on it is different. All the trees have a higher coefficient of spectral correlation coefficient ("the best index"), but the "optimum index" before and after the dust is not completely consistent. Numbers do not have the universal ability to invert the water content of leaves. Inversion of water content of different species will increase the difficulty of the study. (5) no matter to different bands or indices, the dust will not change the correlation between the various pigments and the two, but all of them will change the relation between the various pigments and the various bands or the indices. The correlation coefficient between chlorophyll a and carotenoids increased with each band, and the effect on chlorophyll b was opposite to chlorophyll a and carotenoid. The correlation coefficient between chlorophyll a and the various bands in dust and dust free states were higher than the correlation lines between chlorophyll b and each band. The correlation coefficient between the chlorophyll and the various bands is higher than the correlation coefficient between the carotenoids and the various bands. Although the influence of the dust on the correlation coefficient between the pigments and the various indices is related to the selected index, the regularity of the influence of the dust on the dust is the same as the influence of the dust on the band. (6) Dust can affect the inversion of water content and inversion of chlorophyll concentration. In the field of leaf water content inversion, the effect of dust retention on the accuracy of water content inversion is related to the amount of dust. However, the overall performance is that dust retention will not only reduce the decision coefficient of back regression model, but also increase the RMSE value and RE value of the estimation model, and reduce the inversion. The sensitivity of the different modeling indexes to the change of the dust amount is different. The effect of the dust on the inversion of the concentration of chlorophyll presents two changes: one is to increase the inversion accuracy, and the second is to reduce the inversion accuracy, but the degree of increase is far below the degree of reduction.
【學(xué)位授予單位】:上海師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X173;X513

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 肖慧玲;陳小平;另青艷;周志翔;;園林植物滯塵能力分析及其葉面滯塵高光譜定量遙感模型[J];長(zhǎng)江流域資源與環(huán)境;2015年S1期

2 陳凡濤;趙文吉;晏星;;塵埃影響下的植被指數(shù)修正研究[J];光譜學(xué)與光譜分析;2015年10期

3 彭杰;王家強(qiáng);向紅英;牛建龍;遲春明;柳維揚(yáng);;葉面降塵對(duì)香梨葉片高光譜特征的影響及定量反演研究[J];光譜學(xué)與光譜分析;2015年05期

4 吳春燕;王雪峰;;葉面滯塵量對(duì)大葉黃楊反射光譜的影響[J];林業(yè)科學(xué);2015年03期

5 郭云開;張進(jìn)會(huì);;路域植被葉綠素多光譜遙感定量反演研究[J];測(cè)繪通報(bào);2014年12期

6 王蓉麗;;城市常見園林植被滯塵效果差異性研究[J];安徽農(nóng)業(yè)科學(xué);2014年33期

7 張鵬飛;古麗·加帕爾;陰俊齊;包安明;姚峰;劉金平;;煤礦粉塵影響三種典型荒漠植被生長(zhǎng)的高光譜指數(shù)研究(英文)[J];光譜學(xué)與光譜分析;2014年08期

8 朱葉青;屈永華;劉素紅;陳圣波;;重金屬銅污染植被光譜響應(yīng)特征研究[J];遙感學(xué)報(bào);2014年02期

9 羅娜娜;趙文吉;晏星;;在滯塵影響下的植被葉片光譜變化特征研究[J];光譜學(xué)與光譜分析;2013年10期

10 彭杰;向紅英;王家強(qiáng);紀(jì)文君;柳維揚(yáng);遲春明;左天國(guó);;葉面降塵的高光譜定量遙感模型[J];紅外與毫米波學(xué)報(bào);2013年04期

相關(guān)碩士學(xué)位論文 前4條

1 黃慧娟;保定常見綠化植物滯塵效應(yīng)及塵污染對(duì)其光合特征的影響[D];河北農(nóng)業(yè)大學(xué);2008年

2 王亞超;城市植物葉面塵理化特性及源解析研究[D];南京林業(yè)大學(xué);2007年

3 高金暉;北京市主要植物種滯塵影響機(jī)制及其效果研究[D];北京林業(yè)大學(xué);2007年

4 李玉琛;濟(jì)青高速公路淄博段生態(tài)防護(hù)帶的環(huán)境功能與效應(yīng)[D];南京林業(yè)大學(xué);2005年

,

本文編號(hào):2022891

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2022891.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d65db***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
久久国产成人精品国产成人亚洲| 99国产精品国产精品九九 | 日本高清二区视频久二区| 日本高清视频在线观看不卡| 国产又色又粗又黄又爽| 国产日韩综合一区在线观看| 最新日韩精品一推荐日韩精品| 欧美一区二区三区播放| 日本免费一级黄色录像| 国产真人无遮挡免费视频一区| 日韩精品区欧美在线一区| 国产一区二区三区不卡| 日韩国产精品激情一区| 香港国产三级久久精品三级| 日韩一本不卡在线观看| 国内精品美女福利av在线| 国产原创中文av在线播放| 色哟哟精品一区二区三区| 又色又爽又黄的三级视频| 激情爱爱一区二区三区| 老熟妇2久久国内精品| 国产主播精品福利午夜二区| 亚洲精品一区二区三区日韩| 九九热精彩视频在线免费| 中文字幕乱码免费人妻av| 国产av乱了乱了一区二区三区| 日本少妇aa特黄大片| 开心激情网 激情五月天| 欧美激情视频一区二区三区| 色婷婷亚洲精品综合网| 精品午夜福利无人区乱码| 香蕉网尹人综合在线观看| 黄片免费播放一区二区| 欧美日韩中黄片免费看| 精品人妻少妇二区三区| 91播色在线免费播放| 久久精品亚洲精品国产欧美| 中文字幕佐山爱一区二区免费| 日本加勒比系列在线播放| 日本午夜福利视频免费观看| 亚洲二区欧美一区二区|